검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 3

        1.
        2022.10 구독 인증기관·개인회원 무료
        Under Article 17 of the Radioactive Waste Management Act and Article 12 of the Enforcement Decree of the Radioactive Waste Management Act, KHNP shall reserve the cost for the decommissioning of NPPs as provisions. To preserve the value, an additional amount considering the discount rate is to be added annually. The initial provision is decided by estimating the decommissioning cost of NPP at the time of commercial operation, calculating the future cost by applying the inflation rate to the expected start date of decommissioning, and then discounting it at a discount rate to the present value. According to the current notice, the period for applying inflation and discount rate is defined as the period of 5 years added to the design life of NPP, which is presumed to be due to the assumption that all decommissioning costs are incurred at once 5 years after the permanent shutdown of the power plant. However, assuming that the actual decommissioning period of a domestic nuclear power plant is generally planned for 15 years, it can be expected that most of the decommissioning activities will begin after the decommissioning preparation and transition period, or 5 years after permanent shutdown of the plant. Considering this, it can be said that the current period (5 years + design life) for applying inflation and discount rate is set a little conservatively. In this paper, the initial provision is calculated by appropriately distributing the decommissioning costs of overseas NPPs categorized by International Structure for Decommissioning Costing (ISDC) during the planned decommissioning period of domestic NPPs, and then adding up the decommissioning cost each year by separately applying the inflation and discount period, which was compared with the results calculated using the current method. Through this, it was confirmed that the revised method had the effect of reducing the initial provision by 2.2% to 5.7% compared to the current method depending on the gap between inflation rate and discount rate, which can be converted to about 8 years of inflation and discount period used in the current method. It is expected that this paper will be used in the future as a basic reference for developing a more accurate method for calculating the initial provision of decommissioning cost.
        2.
        2021.03 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Nuclear power plants (NPPs) produce radioactive waste and decommissioning this waste entails additional cost; determining these costs for various types and specifications of radioactive waste can be challenging. The purpose of this study is to identify major determinants of the decommissioning cost and their impact on NPPs. To this end, data from defunct NPPs were gathered and 2SLS (Two Stage Least Squares) regression models were developed to investigate the major contributors depending on the reactor types, viz. PWR (Pressurized Water Reactors) and BWR (Boiling Water Reactors). Additionally, cost estimations and the Monte Carlo simulation were performed as part of performance validation. Our study established that the decommissioning costs are primarily influenced by the level of radioactivity in the decommissioned waste, which can be realized from operational factors like operation period, overall efficiency, and plant capacity, as well as from duration of decommissioning and labour cost. While our study provides an improved statistical approach to recognize these factors, we acknowledge that our models have limitations in forecasting accurately which we envisage to bolster in future studies by identifying more substantive factors.
        6,300원