검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 3

        1.
        2018.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        K-means algorithm is one of the most popular and widely used clustering method because it is easy to implement and very efficient. However, this method has the limitation to be used with fixed number of clusters because of only considering the intra-cluster distance to evaluate the data clustering solutions. Silhouette is useful and stable valid index to decide the data clustering solution with number of clusters to consider the intra and inter cluster distance for unsupervised data. However, this valid index has high computational burden because of considering quality measure for each data object. The objective of this paper is to propose the fast and simple speed-up method to overcome this limitation to use silhouette for the effective large-scale data clustering. In the first step, the proposed method calculates and saves the distance for each data once. In the second step, this distance matrix is used to calculate the relative distance rate (Vj) of each data j and this rate is used to choose the suitable number of clusters without much computation time. In the third step, the proposed efficient heuristic algorithm (Group search optimization, GSO, in this paper) can search the global optimum with saving computational capacity with good initial solutions using Vj probabilistically for the data clustering. The performance of our proposed method is validated to save significantly computation time against the original silhouette only using Ruspini, Iris, Wine and Breast cancer in UCI machine learning repository datasets by experiment and analysis. Especially, the performance of our proposed method is much better than previous method for the larger size of data.
        4,000원
        3.
        1986.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Sixty-eight open clusters have been sampled in proportion to the age fraction of the number distribution of open clusters in Galaxy in order to find out the aging effect in number density distribution of member stars of the open clusters. The Ring method can be used to establish the number density distribution around the central regions of the open clusters. Their number density distributions have been classified to several types according to their shapes. They have been arranged to a serial distribution of A to F in age.
        4,000원