In a PEMFC gas channel with a trapezoidal cross-section, the effect of air and water inlet velocities on water removal characteristics is numerically studied via the volume of fluid(VOF) method. When the channel wall contact angle is 60 degrees, the air inlet velocities higher than 2.5 m/s are advantageous to obtain lower GDL surface water coverage ratio(WCR). The WCR increases as the wall contact angle increases to 90 or 120 degrees due to the relatively lower surface tension force. In overall, WCR decreases as the air inlet velocity increases and WCR increases as the water inlet velocity increases.
The water removal characteristics in a PEMFC trapezoidal gas channel are investigated with the volume of fluid (VOF) method. For the case of wall contact angle of 60 degree, liquid water attaches on the top wall and moves toward the exit. In contrast, liquid water moves along the channel side corner or GDL surface irregularly for the higher wall contact angles. The hydrophillic wall contact angle of 60 degrees provides more favorable diffusion of reactants to cathode reaction sites as the GDL surface water coverage ratio approaches zero even if the water flow rate increases.