To make a satisfactory decision regarding project scheduling, a trade-off between the resource-related cost and project duration must be considered. A beneficial method for decision makers is to provide a number of alternative schedules of diverse project duration with minimum resource cost. In view of optimization, the alternative schedules are Pareto sets under multi-objective of project duration and resource cost. Assuming that resource cost is closely related to resource leveling, a heuristic algorithm for resource capacity reduction (HRCR) is developed in this study in order to generate the Pareto sets efficiently. The heuristic is based on the fact that resource leveling can be improved by systematically reducing the resource capacity. Once the reduced resource capacity is given, a schedule with minimum project duration can be obtained by solving a resource-constrained project scheduling problem. In HRCR, VNS (Variable Neighborhood Search) is implemented to solve the resource-constrained project scheduling problem. Extensive experiments to evaluate the HRCR performance are accomplished with standard benchmarking data sets, PSPLIB. Considering 5 resource leveling objective functions, it is shown that HRCR outperforms well-known multi-objective optimization algorithm, SPEA2 (Strength Pareto Evolutionary Algorithm-2), in generating dominant Pareto sets. The number of approximate Pareto optimal also can be extended by modifying weight parameter to reduce resource capacity in HRCR.
한반도는 지형학적 요건으로 인하여 태풍과 관련된 재난이 매년 발생하여 막대한 피해를 유발하고 있다. 태풍 내습시 폭풍해일과 집중호우가 동시에 발생한다면 해안지역의 침수피해는 더욱 증가할 것으로 사료된다. 이러한 관점에서 태풍과 폭풍해일의 상호의존성을 정량적으로 규명하는 것은 해안지역의 재해분석에 필수적이다. 본 연구에서는 Bayesian 기법을 기반으로 절점기준을 초과하는 임계값의 초과확률을 산정하기 위하여 Poisson 분포와 Generalized-Pareto 분포를 이용한 Poisson-GP 폭풍해일 빈도해석 기법을 개발하였다. 본 연구를 통하여 개발된 Poisson-GP 폭풍해일 빈도해석 기법은 설계해수면의 불확실성을 정량적으로 제시하였으며 해안지역의 폭풍해일 관련 방재기술 향상에 기여할 것으로 판단된다.