PURPOSES : This study aimed to develop a quantitative structure property relationships (QSPR) model to predict the density from the molecular structure information of the asphalt binder AAA1, a non-full connected structure mixed with a total of 12 molecules. METHODS : The partial least squares regression (PLSR) model, which models the relationship between predictions and responses and the structure of these variables, was applied to predict the density of a binder with molecule descriptors. The PLSR model could also analyze data with collinear, noisy, and multiple dimensional independent variables. The density and additive-free AAA1 binder’s molecule systems generated by an asphalt binder’s molecules-related study were used to fit the PLSR model with the molecular descriptors produced using alvaDesc software. In addition to developing the relationship, a systematic feature selection framework (i.e., the V-WSP- and PLSR-modelbased genetic algorithm (GA)) was applied to explore sets of predictors which contributed to predicting the physical property. RESULTS : The PLSR model accurately predicted the density for the AAA1 binder’s molecules using the condition of the temperature and aging level (R2 was 0.9537, RMSE was 0.00424, and MAP was 0.00323 for the test data) and provided a set of features which correlated well to the property. CONCLUSIONS : Through the establishment of the physical property prediction model, it was possible to evaluate the physical properties of construction materials without limited experiments or simulations, and it could be used to comprehensively design the modified material composition.
콩과 같은 밭작물은 주로 토양으로부터 수분을 공급받으며 토양 수분 조건에 따라 생육 반응이 민감하게 반응한다. 작물의 생육과 재배 지역의 토양 조건, 기상 등에 따라 적정 토양 수분을 유지하는 것은 작물 생산량의 증가를 위해 중요하다. 따라서, 본 연구에서는 머신러닝 기법을 이용하여 토양 수분 함량 예측 모델을 개발하였다. 깊이에 따른 토양 수분과 외기, 강수량 등 기상 변수와의 상관 관계를 구명하고, 깊이별 토양 수분예측을 위한 부분최소제곱회귀(PLSR) 모델을 알고리즘을 개발하였다. 콩 재배포장의 10cm, 20cm, 30cm 깊이의 토양수분은 FDR 방식의 센서로 측정하였 고, 콩 작물 주변 환경인자(재배환경의 기온, 상대습도, 풍속, 일사량, 일조시간)는 주변의 기상관측소에서 측정된 데이터를 이용하였다. 이를 이용하여 깊이별 미래의 토양수분함량 예측 모델을 개발한 결과, 10cm와 20cm깊이에서 주요 인자는 현재 토양수분함량과 기온이었으며, 30cm 깊이에서의 주요 인자는 현재 토양수분함량과 기온, 풍속으로 나타났다. 토양 깊이가 깊어짐에 따라 토양수분함량 예측 정확도가 향상되었으며, 이는 표면에 가까울수록 토양수분함량이 변화가 크기 때문으로 예상된다. 또한 미래의 토양 수분함량예측시 1시간 후 예측 정확도가 가장 우수하였으며, 이때의 Rv 2와 RMSEV가 10cm 깊이에서 0.993와 1.069%, 20cm 깊이에서 0.994와 0.821% 였으며, 30cm 깊이에서 0.999와 0.149% 였다. 본 연구 결과는 콩 생육환경 진단을 위해 재배 포장의 토양수분함량을 토양층별로 미래의 토양수분함량도 예측이 가능함을 보여준다.
Estimation approaches for casual relation model with high-order factors have strict restrictions or limits. In the case of ML (Maximum Likelihood), a strong assumption which data must show a normal distribution is required and factors of exponentiation is impossible due to the uncertainty of factors. To overcome this limitation many PLS (Partial Least Squares) approaches are introduced to estimate the structural equation model including high-order factors. However, it is possible to yield biased estimates if there are some differences in the number of measurement variables connected to each latent variable. In addition, any approach does not exist to deal with general cases not having any measurement variable of high-order factors. This study compare several approaches including the repeated measures approach which are used to estimate the casual relation model including high-order factors by using PLS (Partial Least Squares), and suggest the best estimation approach. In other words, the study proposes the best approach through the research on the existing studies related to the casual relation model including high-order factors by using PLS and approach comparison using a virtual model.
Purpose - This study provides appropriate procedures for EFA to help researchers conduct empirical studies by using PLS-SEM.
Research design, data, and methodology - This study addresses the absolute and relative sample size criteria, sampling adequacy, factor extraction models, factor rotation methods, the criterion for the number of factors to retain, interpretation of results, and reporting information.
Results - The factor analysis procedure for PLS-SEM consists of the following five stages. First, it is important to look at whether both the Bartlett test of sphericity and the KMO MSA meet the qualitative criteria. Second, PAF is a better choice of methodology. Third, an oblique technique is a suitable method for PLS-SEM. Fourth, a combined approach is strongly recommended to factor retention. PA should be used at the onset. Next, it is recommended using the K1 criterion. In addition, it is necessary to extract factors that increase the total variance explanatory power through the PVA-FS. Finally, it is appropriate to select an item with a factor loading into 0.5 or higher and a communality of 0.5.
Conclusions - It is expected that the accurate factor analysis processed for PLS-SEM as previously presented will help us extract more precise factors of the structural model.