This paper presents evaluation of diffusion coefficient, passed charge, and compressive strength considering 3 substitution ratios of fly ash(0%, 30%, and 50%) and 3 different W/B ratios(37%, 42%, and 47%). Also, the relationships among diffusion coefficient, passed charge, and compressive strength are investigated focusing on the results at 28 days and 180 days. With increasing replacement ratio of FA and decreasing W/B, the resistances to chlorides(diffusion coefficient and passed charge) are improved. At 28 days and 180 days, linear relationship are observed between strength and resistance to chloride on the whole.
In the work, HPC (High Performance Concrete) samples are prepared with 3 levels of W/B (water to binder) ratios of 0.37, 0.42, and 0.27 and 3 levels of replacement ratios of 0%, 30% and 50%. Several tests containing chloride diffusion coefficient, passed charge, and compressive strength are performed considering age effect of 28 days and 180 days. Chloride diffusion is more reduced in OPC concrete with lower W/B ratio, and GGBFS concrete with 50% replacement ratio shows significant reduction of chloride diffusion in higher W/B ratio. At the age of 28 days, GGBFS concrete with 50% replacement ratio shows more rapid reduction of chloride diffusion than strength development, which reveals that abundant GGBFS replacement has effective resistance to chloride penetration even in the early-aged condition.
This paper presents evaluation of diffusion coefficient, passed charge, and compressive strength considering 3 substitution ratios of fly ash(0%, 30%, and 50%) and 3 different W/B ratios(37%, 42%, and 47%). Also, the relationships among diffusion coefficient, passed charge, and compressive strength are investigated focusing on the results at 28 days and 180 days. With increasing replacement ratio of FA and decreasing W/B, the resistances to chlorides(diffusion coefficient and passed charge) are improved. At 28 days and 180 days, linear relationship are observed between strength and resistance to chloride on the whole.
In the work, HPC (High Performance Concrete) samples are prepared with 3 levels of W/B (water to binder) ratios of 0.37, 0.42, and 0.27 and 3 levels of replacement ratios of 0%, 30% and 50%. Several tests containing chloride diffusion coefficient, passed charge, and compressive strength are performed considering age effect of 28 days and 180 days. Chloride diffusion is more reduced in OPC concrete with lower W/B ratio, and GGBFS concrete with 50% replacement ratio shows significant reduction of chloride diffusion in higher W/B ratio. At the age of 28 days, GGBFS concrete with 50% replacement ratio shows more rapid reduction of chloride diffusion than strength development, which reveals that abundant GGBFS replacement has effective resistance to chloride penetration even in the early-aged condition.