검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 1

        1.
        2018.11 구독 인증기관·개인회원 무료
        The porcine zygotic genome activation occurs along with global epigenetic remolding at the 4-cell stage. The histone acetylation, regulating DNA transcription, replication and so on, requires adequate acetyl-CoA. Acetyl-CoA produced by translocated pyruvate dehydrogenase in the nucleus of mammalian cells has been reported, which is commonly considered locating in the mitochondria. To find out whether the nuclear pyruvate dehydrogenase regulating the histone acetylation by controlling generation of acetyl-CoA, a multiple sgRNAs-CRISPR/Cas9 targeting strategy was employed to generate a pyruvate dehydrogenase E1 alpha1 (Pdha1) knockout (KO) parthenogenetic embryo model. Results showed that the targeting efficiency of Pdha1 reached more than 90%. Hence, this model was used in the subsequent experiments. Furthermore, a translocation of Pdha1 during zygotic genome activation was found by immunofluorescent staining and was significantly inhibited by Pdha1 KO. Meanwhile, the 8-cell stage embryo rate significantly decreased after 72 h (24.19% vs 12.53%, control vs Pdha1 KO), indicating a 4-cell arrest. In addition, the nuclear histone acetylation level significantly decreased when Pdha1 was KO. To determine whether the zygotic genome transcription was affected, the qPCR was performed and showed that the mRNA level of Eif1A, Acly, Sqle and Pdha1 all dropped significantly in the Pdha1 KO group compared to the control. In conclusion, the translocated Pdha1 generates acetyl-CoA for histone acetylation inside the nucleus of porcine embryos, which promotes the zygotic genome activation of porcine embryos.