검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 2

        1.
        2023.05 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The rapid synthesis techniques and interesting multidisciplinary applications make carbon nanodots (CNDs) stand out from semiconductor quantum dots. Moreover, CNDs derived from green precursors have gained more importance beyond chemically derived CNDs due to sustainable synthesis opportunities. However, the presence of molecular impurities or intermediates or fluorophores was neglected during the entire process. Herein, we illustrate the sustainable synthesis of CNDs from Hemigraphis alternata plant leaves with extended carbonization procedure (3 and 9 min) along with simultaneous ethylene glycol and diethyl ether solvent treatment method for the successful removal of interfering fluorophores. To unravel the distinction between purified CNDs (P-CNDs) and organic fluorescent carbon nanostructures (org-FCNs), we carried out photophysical, structural, and morphological studies. A quantum yield (QY) of 69 and 42% was observed for crude org-FCNs, and crude P-CNDs; however after purification, QY of 1% and absence of one component from the fluorescent decays curve suggest the removal of fluorophores. Further, HR-TEM and DLS studies showed the quasi-spherical amorphous particles having < 10 nm particle size for P-CNDs. Besides, in vitro biocompatibility investigation and cellular uptake assay (1–100 μg/mL) against the MDA-MB 468 cell lines proves the ≥ 95% cell viability and good internalization for both org-FCNs and P-CNDs. Hence, our study shows the presence of fluorophore impurities in plant-derived CNDs, the removal and resemblance in biocompatibility properties. Hence, this information can be considered during the synthesis and isolation of CNDs. Simple and effective removal of impurities to harvest pure carbon nanodots (CNDs) through solvent-based selective separation method, and revelation of the cocktail flourphores similar to biocompatible blue fluorescent CNDs were studied.
        4,900원
        2.
        2008.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Porous carbon materials synthesized from various plant derived precursors i.e. seeds of [Castor (Ricinus communis), Soap nut (Sapindus sp.), Cashew-nut (Semecarpus anacardium), Jack fruit (Artocarpus heterophyllus), Safflower (Carthamus tinctorius), Ambadi (Crotolaria juncea), Neem (Azadirachta indica), Bitter Almond (Prunus amygdalus), Sesamum (Sisamum indicum), Date-palm (Phoenix dactylifera),Canola (Brassica napus), Sunflower (Helianthus annulus)] and fibrous materials from [Corn stem- (Zea mays), Rice straw (Oryza sativa), Bamboo (Bombax bambusa) and Coconut fibers (Cocos nucifera)] were screened to make supercapacitor in 5M KOH solution. Carbon material obtained from Jack fruit seeds (92.0 F/g), Rice straw (83.0 F/g), Soap nut seeds (54.0 F/g), Castor seeds (44.34 F/g) and Bamboo (40.0 F/g) gave high capacitance value as compared to others. The magnitude of capacitance value was found to be inversely proportional to the scan rate of measurement. It is suggested that carbon material should possess large surface area and small pore size to get better value of capacitor. Moreover, the structure of carbon materials should be such that majority of pores are in the plane parallel to the plane of electrode and surface is fluffy like cotton ball.
        4,000원