In the present study, a coal-based pitch containing 12.1% quinoline insoluble (QI) underwent isothermal heat treatment, and changes in the mesophase microstructure were analyzed for the heat treatment duration. The nuclei creation and growth rate of mesophase were affected by the distribution of QI particles in the pitch. The growth process could be explained in four regions through the mesophase area fraction. During the carbonization of carbon blocks, mesophase formation was induced in the binder phase. The physical properties of carbon blocks were measured as a function of residence time. As residence time increased, bulk density decreased and porosity increased, but electrical conductivity increased. It was determined that forming a mesophase in the binder phase during carbonization reduced the size of large pores in carbon block and improved the connectivity between particles, thereby increasing electrical conductivity. These results are expected to show greater improvement in electrical properties after graphitization.
In this study, UiO-66-NH2 was synthesized and incorporated with graphene aerosol (UiO-66-NH2/GA) and ethylenediamine functionalized graphene oxide (UiO-66-NH2/GO-NH2). These composites were characterized using infrared spectroscopy, powder X-ray diffraction, ultraviolet–visible light spectroscopy, scanning electron microscope, and energy-dispersive X-ray spectroscopy. UiO-66-NH2/GO-NH2 exhibited 93% adsorption of quinoline in 5 h, UiO-66-NH2 and UiO-66-NH2/GA presented 80.4% and 86.5%, respectively. The high adsorption observed on UiO-66-NH2/GO-NH2 was attributed to the unique electronic properties, and hydrogen bonding between the nitrogen atom of quinoline and NH2- phenyl fragment of UiO-66-NH2, and N–H of ethylenediamine. GO also offered combined strong π–π interactions on its surface, and the oxygen coverage (~ 50%) on GO within the structure is responsible for the formation of strong hydrogen bonds with quinoline. Theoretical calculation suggested that UiO-66-NH2/GO-NH2 presented a more favourable adsorption energy (− 18.584 kcal/ mol) compared to UiO-66-NH2 (− 16.549 kcal/mol) and UiO-66-NH2/GA (− 13.991 kcal/mol). These results indicate that nanocomposites have a potential application in quinoline capture technologies in the process of adsorptive denitrogenation.
In this research, a novel and efficient quinoline thioacetamide functionalized magnetic graphene oxide composite (GO@Fe3O4@QTA) was synthesized and utilized for dispersive magnetic solid phase preconcentration of Cd(II) and Ni(II) ions in urine and various food samples. A number of diverse methods were employed for characterization of the new nanosorbent. The design of experiments approach and response surface methodology were applied to monitor and find the parameters that affect the extraction performance. After sorption and elution steps, the concentrations of target analytes were measured by employing FAAS. The highest extraction performance was achieved under the following experimental conditions: pH, 5.8; sorption time, 6.0 min; GO@Fe3O4@QTA amount, 17 mg; 2.4 mL 1.1 mol L-l HNO3 solution as the eluent and elution time, 13.0 min. The detection limit is 0.02 and 0.2 ng mL-1 for Cd(II), and Ni(II) ions, respectively. The accuracy of the new method was investigated by analyzing two certified reference materials (sea food mix, Seronorm LOT NO 2525 urine powder). The interfering study revealed that there are no interferences from commonly occurring ions on the extractability of target ions. Finally, the new method was satisfactorily employed for rapid extraction and determination of target ions in urine and various food samples.
Among other filters such as light filter, wave filter, air filter, ultra filter and filter paper, a novel adsorption filter from thermostable polyester nonwoven fabrics immobilized with functional super activated carbon by means of quinoline soluble, activateable isotropic pitch binder were developed in this study. The activated carbon precursor is available in the market branded as coconut shell based activated carbon(CCS-AC) produced by Dongyang Carbon Co. Ltd. BET-surface area of this precursor was 1,355 m2/g, after KOH-activation it increased over 2,970 m2/g and was named as super activated carbon. In the preliminary research, this precursor was impregnated with PdCl2(0.188 wt%) KMnO4(3 wt%) and redox-agent(CuCl2, 0.577 wt%) in order to promote TOF up to 100/h and Selectivity up 99% and patented as a functional AC for the ethylene adsorption. The enhancement of the isotropic pitch binder to the AC-immobilized adsorption filter was BET-surface area upgraded by 266 m2/g and promoted the Iodine- and MB-adsorption by 1.4 times, respectively and also micro pore wide ranges 〈 5a~30 a 〉.