Recently, simultaneous localization and mapping (SLAM) approaches employing Rao-Blackwellized particle filter (RBPF) have shown good results. However, due to the usage of the accurate sensors, distinct particles which compensate one another are attenuated as the RBPF-SLAM continues. To avoid this particle depletion, we propose the strategic games to assign the particle’s payoff which replaces the importance weight in the current RBPF-SLAM framework. From simulation works, we show that RBPF-SLAM with the strategic games is inconsistent in the pessimistic way, which is different from the existing optimistic RBPF-SLAM. In addition, first, the estimation errors with applying the strategic games are much less than those of the standard RBPF-SLAM, and second, the particle depletion is alleviated.
Recently, simultaneous localization and mapping (SLAM) approaches employing Rao-Blackwellized particle filter (RBPF) have shown good results. However, no research is conducted to analyze the result representation of SLAM using RBPF (RBPF-SLAM) when particle diversity is preserved. After finishing the particle filtering, the results such as a map and a path are stored in the separate particles. Thus, we propose several result representations and provide the analysis of the representations. For the analysis, estimation errors and their variances, and consistency of RBPF-SLAM are dealt in this study. According to the simulation results, combining data of each particle provides the better result with high probability than using just data of a particle such as the highest weighted particle representation.