검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 1

        1.
        2015.05 서비스 종료(열람 제한)
        A rapid chemical dewatering of the in-situ hydraulically dredged coastal sediment suspensions treated with cationic cetyl-trimethyl-ammonium-bromide (CTAB) was investigated. The dewatering process consisted of coating or adsorption of the surfactant on the surface of sediment to change its hydrophobicity and hexane spraying to enhance moisture removal from the sediment surface. The dredged wet sediment sample was wet-sieved with the #450 sieve (32 μm) and synthetic sea-water made of bay salt (3.5%). The sieved sediment was settled and then freeze-dried. Considering the field process, the freeze-dried sediment was pre-treated by adding 5 M H2O2 and 0.5% Tween 80 to remove organics in the sediment and then adding 0.5% alum and 0.001% PAC for flocculation. The mean water content of the pre-treated sediment was 55.8~59.1%. The CTAB dosage was in the range of 0.001 to 1.0 g per 10 g of the pre-treated sediment (0.01 to 0.10 (wt/wt) of CTAB/sediment ratio). After addition, the sediment and CTAB mixture was mixed thoroughly by using a vortex followed by freeze-dried. For hydrophobicity test, 0.5 g of the freeze-dried samples were taken into the two-layer solutions mixed with hexane (20 mL) and deionized water (20 mL). The higher amount of the samples were migrated into the hexane layer as the CTAB dosage increased to 0.1 g (Fig. 1), indicating that the surface charge of the sediment was neutralized by electrostatic attraction of negative charged sediment particles with cationic CTAB. The additional dosage of CTAB to 1.0 g per 10 g sediment led to transfer some of the sediment back into the water layer (Fig. 1). The optimum dosage of CTAB was 0.1 to 0.2 g per 10 g sediment. The sediments with the optimum dosage were transferred onto the filter paper and treated with spraying 0.25 to 1.0 mL of hexane per 1 g sediment, resulting in the significant decrease in the water content to 21% at 1.0 mL hexane/g sediment.