검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 1

        1.
        2022.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        냉매 오충전은 에어컨에서 빈번하게 발생하는 고장 모드 중 하나로, 적정 충전량 대비 부족 및 과충전 모두 냉방 성능의 저하를 유 발하므로 충전된 냉매량을 정확하게 판단하는 것이 중요하다. 본 연구에서는 퍼지 군집화 기법을 통한 정상상태 식별을 통해 냉매 오 충전량을 다중 분류하는 모델을 개발하였다. 정상상태 식별을 위해 에어컨 운전 데이터에 대해 이동 평균 간의 차이를 활용한 퍼지 군 집화 알고리즘을 적용하였으며, IFDR를 통해 기존 연구된 정상상태 판단 기법들과 식별 결과를 비교하였다. 이후, 시스템 내 상관성 을 고려한 mRMR을 이용해 특징을 선택하였으며, 도출된 특징을 이용해 SVM 기반의 다중 분류 모델이 생성되었다. 제안된 방법은 시험 데이터를 통해 만족할 만한 분류 정확도와 강건성을 도출하였다.
        4,000원