이 논문은 과거의 산업 포트폴리오 수익률이 어떻게 확률추세(stochastic trend)로부터 전체 주식시장과 두 가지 거시경제 변수(경기동행지수와 산업생산)들을 예측할 수 있는 지를 알아보는 데에 초점을 두고 있다. 먼저, 산업들의 포트폴리오 수익률과 전체 주식시장 수익률이 VAR모형을 토대로 볼 경우 Granger 인과관계를 갖고 있는지를 살펴보았다. 이 분석의 결과에서 건설, 금속, 무역, 반도체, 보험, 비금속광물, 서비스, 섬유, 식료, 운수/창고, 유통, 의류, 자동차부풀, 전기전자, 정유, 조선, 종이/목재, 증권, 컴퓨터, 통신, 화학 등 21개 업종은 각 산업별 포트폴리오 수익률이 전체 주식시장 수익률을 수준에서 통계적으로 유의한 영향을 주고 있음을 알 수 있었다. 이들 21개의 산업별 포트폴리오 수익률은 경제적으로도 중요한 의미를 지니고 있다. 즉, 당월(t)의 비금속광물과 정유, 금속 포트폴리오 수익률 등은 다음 월(t+1)의 전체 주식시장 수익률과 음(-)의 상관관계를 갖고 있는 것을 알 수 있었다. 이는 역사적인 데이터를 살펴볼 때, 이들 산업 제품의 가격의 상승은 향후 경제에 악영향을 주기 때문인 것이다. 반면에, 의류 및 무역 등의 경우에는 반대로 이들 산업들의 포트폴리오 수익률이 전체 주식시장 수익률과 양의 상관관계를 나타내 이들 산업들에 있어서 높은 수익률은 향후 경제가 상승국면이 예상됨을 나타내어 주고 있다. 이와 같은 산업별 포트폴리오 수익률과 거시경제변수 간의 높은 상관관계를 토대로 하여 전체 주식시장 수익률 예측을 가능하게 하는 업종 정보(sector information)의 점진적 확산(slow diffusion) 현상이 발생하게 되는 것이다.