The stability of the steady Rossby-Haurwitz wave (R-H wave) in the nondivergent barotropic model (NBM) on the sphere was investigated with the normal mode method. The linearized NBM equation with respect to the R-H wave was formulated into the eigenvalue-eigenvector problem consisting of the huge sparse matrix by expanding the variables with the spherical harmonic functions. It was shown that the definite threshold R-H wave amplitude for instability could be obtained by the normal mode method. It was revealed that some unstable modes were stationary, which tend to amplify without the time change of the spatial structure. The maximum growth rate of the most unstable mode turned out to be in almost linear proportion to the R-H wave amplitude. As a whole, the growth rate of the unstable mode was found to increase with the zonal- and total-wavenumber. The most unstable mode turned out to consist of more-than-one zonal wavenumber, and in some cases, the mode exhibited a discontinuity over the local domain of weak or vanishing flow. The normal mode method developed here could be readily extended to the basic state comprised of multiple zonalwavenumber components as far as the same total wavenumber is given.
전구영역 수치모델을 이용하여 순압 로스비-하우어비츠 파동의 안정성을 조사하였다. 본 연구에서 조사한 로스 비-하우어비츠 파동은 강체 회전하는 동서 기본류와 유한한 진폭을 가지는 구면조화 파동으로 구성된다. 로스비-하우어 비츠 파동은 강체 회전하는 동서 평균류의 강도에 따라 정상 또는 비정상의 구조로 나타난다. 수치 실험을 통해 임의 의 다른 두 시간에서 섭동장의 진폭을 비교하여 파동의 안정성뿐만 아니라 성장률을 결정하였다. 로스비-하우어비츠 파 동의 불안정 모드는 다양한 동서 파수 성분이 결합된 형태로 나타났다. 파동의 속도가 느린 지역에서 와도 섭동장은 불연속적인 형태를 보이는데, 이는 모델의 수평 해상도와 관계가 없는 것으로 밝혀졌다. 푸리에-유한 요소 모델에서 더 이른 적분 시간에 불안정 모드가 나타났는데, 이는 구면조화 스펙트럴 모델 대비 더 낮은 수치 정확도를 가지기 때문 인 것으로 보인다. 모델의 전체적인 정확도를 고려하여, 불안정 모드가 구면 조화 파동을 전체적으로 지배하기 시작하 는 시간을 추정하였다.
기울어진 자전축을 갖는 회전계에서, 일정한 각속도로 회전하는 동서풍이 있는 경우에 대해서 로스비하우어비츠 파동의 섹터모드(적도에 대한 반구 비대칭의 첫 번째 모드)와 균형을 이루는 지위고도장을 해석적으로 유도하였다. 균형장은 발산방정식으로부터 시간변화를 제거하고 라플라시안 연산자를 역산함으로써 구하였다. 역산은 비선형항의 계산과 포이슨 방정식의 해를 구하는 두 단계의 연산과정으로 이루어져 있다. 두 번째 단계에서, 구면조화함수로 표현되는 강제력의 항은 구면조화함수의 선형관계를 이용하였고, 그 이외의 항은 구면조화함수를 적분함으로써 구하였다. 균형장은 여섯 개의 동서파수 성분으로 표현됨이 드러났다. 본 연구에서 구한 균형장은 적도에 대하여 비대칭의 구조를 가지기 때문에, 대칭의 구조만을 가지는 것에 비하여 미분방정식의 수치해의 검종법으로서의 활용도가 높다. 일정한 각속도를 갖는 배경 동서풍이 지구의 자전각속도와 같거나 1/2에 해당하는 경우에는, 일부 동서파수 성분이 제거되는 것으로 나타났다. 이론적으로 구한 균형장은 정교한 수치모델을 통하여 구한 균형장과 거의 정확하게 같은 것으로 밝혀져, 이론적 해의 타당성이 입증되었다. 마지막으로, 로스비하우어비츠 파동의 섹터모드와 균형을 이루는 지위고도장의 안정성을 장기간시간적분을 통하여 살펴보았다.