검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 2

        1.
        2024.09 KCI 등재후보 구독 인증기관 무료, 개인회원 유료
        Sestrin 2 (SESN2) is a member of the sestrin family of stress-induced proteins that negatively regulate agingassociated biological processes. This study aims to investigate the role of SESN2 in regulating the differentiation potential and senescence of mesenchymal stem cells (MSCs) derived from young and elderly donors. Bulk RNA sequencing revealed a common decline in the SESN2 mRNA levels in MSCs from elderly individuals, which was confirmed via reverse transcription-polymerase chain reaction and western blot analyses. SESN2 knockdown in MSCs from young donors resulted in phenotypic changes similar to those in MSCs from elderly donors, including an enhanced expression of senescence and adipogenic markers and diminished expression of osteogenic markers. To confirm the effect of decreased SESN2 expression on osteogenic and adipogenic differentiation, we induced Sesn2 knockdown in mouse bone marrow-derived MSCs. Sesn2 knockdown suppressed the mRNA expression of osteogenic marker genes, alkaline phosphatase activity, and matrix mineralization. Furthermore, Sesn2 knockdown enhanced mRNA expression of the adipogenic marker genes and intracellular lipid accumulation. These results suggest that a decline in SESN2 expression during aging contributes to the shift of MSC differentiation from osteogenic to adipogenic lineage.
        4,000원
        2.
        2019.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Sestrin-2 (SESN2) as a stress-metabolic protein is known for its anti-oxidative effects as a downstream factor of PERK pathways in mammalian cells. However, the expression patterns of SESN2 in conjunction with the UPR signaling against to ER stress on porcine oocyte maturation in vitro, have not been reported. Therefore, we confirmed the expression pattern of SESN2 protein, for which to examine the relationship between PERK signaling and SESN2 in porcine oocyte during IVM. We investigated the SESN2 expression patterns using Western blot analysis in denuded oocytes (DOs), cumulus cells (CCs), and cumulus-oocyte complexes (COCs) at 22 and 44 h of IVM. As expected, the SESN2 protein level significantly increased (p < 0.01) in porcine COCs during 44 h of IVM. We investigated the meiotic maturation after applying ER stress inhibitor in various concentration (50, 100 and 200 μM) of tauroursodeoxycholic acid (TUDCA). We confirmed significant increase (p < 0.05) of meiotic maturation rate in TUDCA 200 μM treated COCs for 44 h of IVM. Finally, we confirmed the protein level of SESN2 and meiotic maturation via regulating ER-stress by only tunicamycin (Tm), only TUDCA, and Tm + TUDCA treatment in porcine COCs. As a result, treatment of the TUDCA following Tm pre-treatment reduced SESN2 protein level in porcine COCs. In addition, SESN2 protein level significantly reduced in only TUDCA treated porcine COCs. Our results suggest that the SESN2 expression is related to the stress mediator response to ER stress through the PERK signaling pathways in porcine oocyte maturation.
        4,000원