검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 4

        1.
        2024.04 구독 인증기관·개인회원 무료
        As climate change and population growth raise the likelihood of natural disasters, it becomes crucial to comprehend and mitigate these risks in vital infrastructure systems, especially nuclear power plants (NPPs). This research addresses the necessity for evaluating multiple hazards by concentrating on slope failures triggered by earthquakes near NPPs over a timeframe extending up to a return period of 100,000 years. Utilizing a Geographical Information System (GIS) and Monte Carlo Simulation (MCS), the research conducts a comprehensive fragility assessment to predict failure probability under varying ground-shaking conditions. According to the Newmark displacement method, factors such as Peak Ground Acceleration (PGA), slope angle, soil properties, and saturation ratio play significant roles in determining slope safety outcomes. The investigation aims to enhance understanding seismic event repercussions on NPP-adjacent landscapes, providing insights into long-term dynamics and associated risks. Results indicate an increase in slope vulnerability with longer return periods, with distinct instances of slope failures at specific return periods. This analysis not only highlights immediate seismic impacts but also underscores the escalating risk of slope displacement across the extended return period scales, crucial for evaluating long-term stability and associated hazards near nuclear infrastructure.
        2.
        2015.03 KCI 등재 서비스 종료(열람 제한)
        Recently, the event of slope failure has been occurring frequently due to rapid climate changes and broad development of infrastructures, and the research for establishment of monitoring and prevention system has been an attentive issue. The major influence factors of slope failure mechanism can be considered moisture and temperature in soil, and the slope failure can be monitored and predicted through the trend of moisture-temperature change. Therefore, the combined sensing technology for the continuous measurement of moisture-temperature with different soil depths is needed for the slope monitoring system. The various independent sensors for each item (i.e. temperature and moisture respectively) have been developed, however, the research for development of combined sensing system has been hardly carried out. In this study, the high-fidelity sensor combing temperature-moisture measurement by using the minimized current consuming temperature circuit and the microwave emission moisture sensor is developed and applied on the slope failure monitoring system. The feasibility of developed monitoring system is verified by various experimental approaches such as standard performance test, mockup test and long-term field test. As a result, the developed temperature-moisture combined measurement system is verified to be measuring and monitoring the temperature and moisture in soil accurately.
        3.
        2011.02 서비스 종료(열람 제한)
        A 3D seepage flow numerical simulation model was developed for seepage analysis of a landslide dam. A 3D seepage flow numerical simulation model coupled with a 2D surface flow and erosion/deposition model was developed for seepage analysis of a slope due to a rainfall event. The conventional water-phase (one-phase) seepage flow model assumes only water phase flow in seepage analysis, which is inadequate for unsaturated soil domains. Hence, a water-air two-phase seepage flow model that considers both water and air phase in the seepage flow process is also used for seepage analysis. Pore water pressure and moisture content data obtained by the seepage flow model were then used to analyze the stability of the slope. Janbu’s simplified method as well as the extended Spencer method was used for the stability analysis. Numerical simulation results and experimental measurements are satisfactorily in agreement.
        4.
        2006.05 KCI 등재 서비스 종료(열람 제한)
        사면거동 및 파괴를 분석하기 위하여, 일반적으로 암반사면에는 Polynomial model, 토사사면에는 Growth model을 별도로 적용하여 사용하여 왔다. 이 기법은 사면의 파괴예측보다 사면의 누적변위를 묘사하기 위한 그래프 형태 위주이다. 따라서 본 연구에서는 사면의 거동보다는 파괴 예측에 초점을 맞추어 일반적으로 사용되는 두 모델을 병합하여 파괴예측을 위한 Asymptote(점근선)과 누적변위량도 같이 묘사할 수 있는 3차 방정식 모델 (3-degree polynomial model)로 단일화 할 것을 제안하여 현장 계측 data를 분석하였다. 국도 절취 사면부인 단양군 고수재 사면과 영덕군 축산면에 위치한 영덕 사면에 본 해석 모델을 적용하였다. 고수재는 토사사면으로 Growth model에 다른 거동을 나타내었고, 영덕사면은 Polynomial model에 따른 거동을 나타내었다. 분석결과, Polynomial model 과 Growth model로 구분된 해석 모델 형태를 의 형태를 가지는 3차 방정식을 사용하면, 하나의 모델로 사면의 거동 및 파괴를 해석할 수 있으며, 그 거동 해석 및 파괴 예측능력이 더 우수하다는 것이 증명되었다. Polynomial model의 경우, 방정식의 차수를 증가시켜도, 그래프의 값과 형태가 유사함을 알 수 있었다.