Angiography has excellent advantages to visually observe the internal morphology of the stenosed blood vessel. For OCT(Optical coherence tomography), it is possible to directly provide a reliable two-dimensional cross-sectional information as compared to conventional angiography. In the present study, both velocity and wall shear stress distributions were numerically investigated using stenosed blood vessel models (0%, 25%, 50%, and 75% stenotic expansion rate). The blood vessel geometry was prepared based on the human stenotic aorta from OCT image. Commercially available software (CATIA V5) was used to reconstruct 3D blood vessel for numerial analysis. Pulsatile blood flow boundary condition was applied. The numerical study could help our understanding of the hemodynamic differences in a stenosed blood vessel.
In the present numerical study, simple stenotic artery models using pulsatile flow condition were investigated. A reversing sinusoidal velocity for pulsatile flow was imposed at the flow inlet and the corresponding based on the vessel radius. The stenotic geometries modeled using mechanical 3D CAD. It has been used that consist of 0.2, 0.4, 0.5 0.75 and 0.8 stenotic rate in a cylindrical tube. In this paper, numerical solutions are presented for a second harmonic oscillatory flow using commercial code CFX 14. As stenosis rate increases, the maximum wall shear stress(WSS) increases while the minimum WSS decreases. As the stenotic rate increases, the pressure drop at the throat severely decreases to collapse the artery and plaque. It is found that the fluid mechanical disturbances due to the constriction were highly sensitive with rate of stenosis. When stenosis rate increases, the recirculation region exists. In this recirculation region the possibility of plaque attachment is increasingly higher. The present results enhance our understanding of the hemodynamics of a stenotic artery.