PURPOSES : Traffic accidents at intersections have been increased annually so that it is required to examine the causations to reduce the accidents. However, the current existing accident models were developed mainly with non-linear regression models such as Poisson methods. These non-linear regression methods lack to reveal complicated causations for traffic accidents, though they are right choices to study randomness and non-linearity of accidents. Therefore, to reveal the complicated causations of traffic accidents, this study used structural equation methods(SEM). METHODS : SEM used in this study is a statistical technique for estimating causal relations using a combination of statistical data and qualitative causal assumptions. SEM allow exploratory modeling, meaning they are suited to theory development. The method is tested against the obtained measurement data to determine how well the model fits the data. Among the strengths of SEM is the ability to construct latent variables: variables which are not measured directly, but are estimated in the model from several measured variables. This allows the modeler to explicitly capture the unreliability of measurement in the model, which allows the structural relations between latent variables to be accurately estimated. RESULTS : The study results showed that causal factors could be grouped into 3. Factor 1 includes traffic variables, and Factor 2 contains turning traffic variables. Factor 3 consists of other road element variables such as speed limits or signal cycles. CONCLUSIONS : Non-linear regression models can be used to develop accident predictions models. However, they lack to estimate causal factors, because they select only few significant variables to raise the accuracy of the model performance. Compared to the regressions, SEM has merits to estimate causal factors affecting accidents, because it allows the structural relations between latent variables. Therefore, this study used SEM to estimate causal factors affecting accident at urban signalized intersections.