In contemporary society, vibration and noise in the road nearby buildings have become social problems as vehicles operation has increased. Especially, in the case of the building used to art performance, available suitability of the building is tested by the indoor noise class. Therefore, the purpose of this paper is the measurement of the structure-borne noise of Seoul Art Center nearby Umyeonsan tunnel and analyzing the effects of countermeasure to it. To measure the effects of countermeasure, not only structure-borne noise is measured, but also the vibration is measured, before and after the construction of pavement using pad and porous asphalt. Consequently, the sound pressure level in art center 1st floor is reduced after mat pavement method, structure-borne noise that was high in 25Hz wide-band before pavement decreased regardless of experimental vehicle's velocity. Using porous asphalt pavement the noise was reduced about 3 dB(A).
The source of wayside noise for the train are the aerodynamic noise, wheel/rail noise, and power unit noise. The major source of railway noise is the wheel/rail noise caused by the interaction between the wheels and rails. The Structure borne noise is mainly a low frequency problem. The train noise and vibration nearby the elevated railway make one specific issue. The microphone array method is used to search sound radiation characteristics of elevated structure to predict the noise propagation from an elevated railway. In this paper, structure-borne noise that is brought into inside of apartment when it passes by straight line track and rail lubricator section with test coach was measured in accordance of track characteristic of urban railway vehicle. It was compared with NC curve and examinate result.