검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 7

        1.
        2022.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Most of the predictions using machine learning are neutral predictions considering the symmetrical situation where the predicted value is not smaller or larger than the actual value. However, in some situations, asymmetric prediction such as over-prediction or under-prediction may be better than neutral prediction, and it can induce better judgment by providing various predictions to decision makers. A method called Asymmetric Twin Support Vector Regression (ATSVR) using TSVR(Twin Support Vector Regression), which has a fast calculation time, was proposed by controlling the asymmetry of the upper and lower widths of the ε-tube and the asymmetry of the penalty with two parameters. In addition, by applying the existing GSVQR and the proposed ATSVR, prediction using the prediction propensities of over-prediction, under-prediction, and neutral prediction was performed. When two parameters were used for both GSVQR and ATSVR, it was possible to predict according to the prediction propensity, and ATSVR was found to be more than twice as fast in terms of calculation time. On the other hand, in terms of accuracy, there was no significant difference between ATSVR and GSVQR, but it was found that GSVQR reflected the prediction propensity better than ATSVR when checking the figures. The accuracy of under-prediction or over-prediction was lower than that of neutral prediction. It seems that using both parameters rather than using one of the two parameters (p_1,p_2) increases the change in the prediction tendency. However, depending on the situation, it may be better to use only one of the two parameters.
        4,300원
        2.
        2021.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The development of IOT technology and artificial intelligence technology is promoting the smartization of manufacturing system. In this study, data extracted from acceleration sensor and current sensor were obtained through experiments in the cutting process of SKD11, which is widely used as a material for special mold steel, and the amount of tool wear and product surface roughness were measured. SVR (Support Vector Regression) is applied to predict the roughness of the product surface in real time using the obtained data. SVR, a machine learning technique, is widely used for linear and non-linear prediction using the concept of kernel. In particular, by applying GSVQR (Generalized Support Vector Quantile Regression), overestimation, underestimation, and neutral estimation of product surface roughness are performed and compared. Furthermore, surface roughness is predicted using the linear kernel and the RBF kernel. In terms of accuracy, the results of the RBF kernel are better than those of the linear kernel. Since it is difficult to predict the amount of tool wear in real time, the product surface roughness is predicted with acceleration and current data excluding the amount of tool wear. In terms of accuracy, the results of excluding the amount of tool wear were not significantly different from those including the amount of tool wear.
        4,000원
        3.
        2020.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        With the spread of smart manufacturing, one of the key topics of the 4th industrial revolution, manufacturing systems are moving beyond automation to smartization using artificial intelligence. In particular, in the existing automatic machining, a number of machining defects and non-processing occur due to tool damage or severe wear, resulting in a decrease in productivity and an increase in quality defect rates. Therefore, it is important to measure and predict tool life. In this paper, v-ASVR (v-Asymmetric Support Vector Regression), which considers the asymmetry of є-tube and the asymmetry of penalties for data out of є-tube, was proposed and applied to the tool wear prediction problem. In the case of tool wear, if the predicted value of the tool wear amount is smaller than the actual value (under-estimation), product failure may occur due to tool damage or wear. Therefore, it can be said that v-ASVR is suitable because it is necessary to overestimate. It is shown that even when adjusting the asymmetry of є-tube and the asymmetry of penalties for data out of є-tube, the ratio of the number of data belonging to є-tube can be adjusted with v. Experiments are performed to compare the accuracy of various kernel functions such as linear, polynomial. RBF (radialbasis function), sigmoid, The best result isthe use of the RBF kernel in all cases
        4,000원
        4.
        2020.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Support vector regression (SVR) is devised to solve the regression problem by utilizing the excellent predictive power of Support Vector Machine. In particular, the є-insensitive loss function, which is a loss function often used in SVR, is a function thatdoes not generate penalties if the difference between the actual value and the estimated regression curve is within є. In most studies, the є-insensitive loss function is used symmetrically, and it is of interest to determine the value of є. In SVQR (Support Vector Quantile Regression), the asymmetry of the width of є and the slope of the penalty was controlled using the parameter p. However, the slope of the penalty is fixed according to the p value that determines the asymmetry of є. In this study, a new ε-insensitive loss function with p1 and p2 parameters was proposed. A new asymmetric SVR called GSVQR (Generalized Support Vector Quantile Regression) based on the new ε-insensitive loss function can control the asymmetry of the width of є and the slope of the penalty using the parameters p1 and p2 , respectively. Moreover, the figures show that the asymmetry of the width of є and the slope of the penalty is controlled. Finally, through an experiment on a function, the accuracy of the existing symmetric Soft Margin, asymmetric SVQR, and asymmetric GSVQR was examined, and the characteristics of each were shown through figures.
        4,000원
        5.
        2019.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This research is about a study on the flow stress of Inconel 601 under hot deformation. For Inconel 601, hot compression tests on gleeble 3500 system under 925℃, 1050℃ and 1150℃ and 0.001/s, and 5/s of strain rates were done. The flow behavior of the Inconel 601 was studied and modeled. In this study, the flow stress was modeled using deep neural network and support vector regression algorithm. The flow stress of Inconel 601 was dependent on strain rate and temperature. It was found that both the deep neural network and support vector regression adequately described the flow stress variation of Inconel 601. However, the model by the support vector regression was found to be superior to the model by the deep neural network. The construction of the model by SVR was more efficient than the construction by DNN. Also the prediction accuracy of the model by SVR was better than the accuracy of the model by DNN. It is found that the MAPE(Mean absolute percentage error) of the DNN based model was 4.89% while the MAPE of the SVR based model was 1.98%.
        4,000원
        6.
        2012.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        플라스틱 사출 제품은 다양한 가전제품과 하이테크 제품에 널리 사용되고 있다. 그러나 현재의 치열한 경쟁적 비즈니스 환경에서 플라스틱 사출 제품 제조업자들은 고객을 만족시키면서 경쟁력을 얻기 위하여 다른 경쟁자들보다 먼저 새로운 제품을 시장에 출시하고 신제품의 개발기간을 줄이기 위한 노력을 할 여유가 부족하다. 따라서 무한경쟁의 시장에서 살아남기 위해서는 제조업자들은 시장 마켓 점유를 빠르게 올리는 것과 동시에 제품의 가격 경쟁력을 가져야 한다. 특징기반
        4,000원
        7.
        2014.11 KCI 등재 서비스 종료(열람 제한)
        본 연구에서는 Tropical Rainfall Measuring Mission (TRMM) 3B43 V7 (25 km)의 월 누적 격자 강우량을 1 km 해상도로 상세화하기 위해 Support Vector Machine (SVM) 회귀를 활용한 상세화 기법을 제안하였다. 비선형 예측모델인 SVM은 상세화의 기반이 되는 다양한 수문기상인자와 강우 발생간의 월별 상관성 구축에 효율적으로 활용되었다. 상세화된 격자 강우는 전국에 고루 분포한 64개 지점 관측 강우와의 비교 분석을 통해 상세화 이전의 격자 강우 보다 다소 개선된 정확도를 지니는 것으로 확인되었다. 특히, 상세화 이전 격자 강우가 지니는 양의 Bias가 효과적으로 개선되었다. 상세화 전후의 공간분포 비교에서 두 분포는 평균적으로 유사했으나, 상세화 이전 강우의 공간분포에서 나타나지 않았던 강우의 국지적 특성이 상세화된 공간분포를 통해 잘 표현되는 것을 확인할 수 있었다. 특히, 일부 지점의 과소 및 과대산정이 상세화를 통해 개선되어 전반적인 정확도 향상에 기여하였음을 확인했다. 본 연구에서 제안된 상세화 기법이 적용된 격자 강우는 모델의 정확도 향상을 위한 고해상도 입력자료로 활용될 수 있으며, 추후 연구에서는 SVM 외에 다른 회귀 방식을 활용하여 최적의 강우 상세화 기법 개발에 기여할 수 있을 것으로 보인다.