Object manipulation in cluttered environments remains an open hard problem. In cluttered environments, grasping objects often fails for various reasons. This paper proposes a novel task and motion planning scheme to grasp objects obstructed by other objects in cluttered environments. Task and motion planning (TAMP) aims to generate a sequence of task-level actions where its feasibility is verified in the motion space. The proposed scheme contains an open-loop consisting of three distinct phases: 1) Generation of a task-level skeleton plan with pose references, 2) Instantiation of pose references by motion-level search, and 3) Re-planning task based on the updated state description. By conducting experiments with simulated robots, we show the high efficiency of our scheme.