This research proposes a novel approach to tackle the challenge of categorizing unstructured customer complaints in the automotive industry. The goal is to identify potential vehicle defects based on the findings of our algorithm, which can assist automakers in mitigating significant losses and reputational damage caused by mass claims. To achieve this goal, our model uses the Word2Vec method to analyze large volumes of unstructured customer complaint data from the National Highway Traffic Safety Administration (NHTSA). By developing a score dictionary for eight pre-selected criteria, our algorithm can efficiently categorize complaints and detect potential vehicle defects. By calculating the score of each complaint, our algorithm can identify patterns and correlations that can indicate potential defects in the vehicle. One of the key benefits of this approach is its ability to handle a large volume of unstructured data, which can be challenging for traditional methods. By using machine learning techniques, we can extract meaningful insights from customer complaints, which can help automakers prioritize and address potential defects before they become widespread issues. In conclusion, this research provides a promising approach to categorize unstructured customer complaints in the automotive industry and identify potential vehicle defects. By leveraging the power of machine learning, we can help automakers improve the quality of their products and enhance customer satisfaction. Further studies can build upon this approach to explore other potential applications and expand its scope to other industries.
최근 기술융합의 핵심현상으로 사물인터넷이 대두되면서 사물인터넷의 기술트 렌드 및 기술융합에 관해 많은 연구들이 진행되고 있다. 그러나 기존 연구들의 대부분이 사물인터넷 기술 동향에 대한 정성적 연구에 그치고 있어 기술융합의 구체적 양상을 파악하기 어려운 실정이다. 따라서 본 연구에서는 특허 데이터를 기술의 대용데이터로 간주하고, 동시 분류분석과 텍스트마이닝을 바탕으로 사물인터넷 융합 네트워크를 구축하고 융합의 특성을 분석하였다. 본 연구에서는 먼저 문헌연구를 통해 사물인터넷의 융합을 일으키는 주요 기술 군을 디바이스, 네트워크, 플랫폼, 서비스 네 가지로 정의한 후, “Internet of Things” 키워드 를 중심으로 미국 특허청에서 수집된 923개 특허의 클래스를 네 가지 기술군에 할당하여 이 들 간 관계를 파악하였다. 대부분의 클래스 및 키워드가 디바이스에 관련되어 있으므로, 본 연구에서는 융합 현상을 디바이스 융합과 전체 융합으로 나누어 기술융합 양상을 파악하였다. 디바이스 중심의 사물인터넷 기술을 분석한 결과 센서 디바이스를 비롯한 헬스케어 디바 이스, 냉장 및 냉동 장치, 에너지관리 디바이스, 로봇, 임베디드 등이 주요 융합 그룹으로 도 출되었다. 전체 기술을 대상으로 분석한 결과 사물인터넷 요소기술을 중심으로 스마트 헬스 케어, 스마트 홈, 무인자동차 등 사물인터넷의 다양한 응용영역들이 기술융합을 이루고 있는 것으로 파악되었다. 본 연구 결과는 사물인터넷 기술융합 활성화를 위한 정책 및 전략 수립 에 효과적으로 활용될 수 있을 것으로 기대된다.