The purpose of this study was to find which spatiotemporal gait parameters gained from stroke patients could be predictive factors for the gait part of Tinetti Performance-Oriented Mobility Assessment (POMA-G). Two hundred forty-six stroke patients were recruited for this study. They participated in two assessments, the POMA-G and computerized spatiotemporal gait analysis. To analyze the relationship between the POMA-G and spatiotemporal parameters, we used Pearson’s correlation coefficients. In addition, multiple linear regression analyses (stepwise method) were used to predict the spatiotemporal gait parameters that correlated most with the POMA-G. The results show that the gait velocity (r=.67, p<.01), cadence (r=.66, p<.01), step length of the affected side (r=.49, p<.01), step length of the non-affected side (r=.53, p<.01), swing percentage of the non-affected side (r=.47, p<.01), and single support percentage of the affected side (r=.53, p<.01) as well as the double support percentage of the non-affected side (r=-.42, p<.01) and the step-length asymmetry (r=-.64, p<.01) correlated with POMA-G. The gait velocity, step-length asymmetry, cadence, and single support percentage of the affected side explained 67%, 2%, 2%, and 1% of the variance in the POMA-G, respectively. In conclusion, gait velocity would be the most predictive factor for the POMA-G.