PURPOSES: This study is to develop a road traffic sign recognition and automatic positioning for road facility management. METHODS: In this study, we installed the GPS, IMU, DMI, camera, laser sensor on the van and surveyed the car position, fore-sight image, point cloud of traffic signs. To insert automatic position of traffic sign, the automatic traffic sign recognition S/W developed and it can log the traffic sign type and approximate position, this study suggests a methodology to transform the laser point-cloud to the map coordinate system with the 3D axis rotation algorithm. RESULTS: Result show that on a clear day, traffic sign recognition ratio is 92.98%, and on cloudy day recognition ratio is 80.58%. To insert exact traffic sign position. This study examined the point difference with the road surveying results. The result RMSE is 0.227m and average is 1.51m which is the GPS positioning error. Including these error we can insert the traffic sign position within 1.51m CONCLUSIONS: As a result of this study, we can automatically survey the traffic sign type, position data of the traffic sign position error and analysis the road safety, speed limit consistency, which can be used in traffic sign DB.
Recognition of traffic signs helps an unmanned ground vehicle to decide its behavior correctly, and it can reduce traffic accidents. However, low cost traffic sign recognition using a vision sensor is very difficult because the signs are exposed to various illumination conditions. This paper proposes a new approach to solve this problem using an illuminometer which detects the intensity of illumination. Using the intensity of illumination, the recognizer adjusts the parameters for image processing. Therefore, we can reduce the loss of information such as the shape and color of traffic signs. Experimental results show that the proposed method is able to improve the performance of traffic sign recognition in various weather and lighting conditions.