Farmers using conventional sprayer system are exposed to pesticide poisoning and soil pollution due to pesticide application. In order to reduce this problem, the effective sprayer system is required. In this paper, we propose development of intelligent sprayer system using tree recognition. This intelligent sprayer system consists of an image recognition module, a remote control, a sprayer system, an air blower, and a control module. It is possible to spray pesticides automatically and manually through remote control using cameras and controls. We conducted a total of four experiments in tree recognition experiment, test of attachment and water sensitive papers, measurement of pesticide consumption, and measurement of worker exposure. The test results showed that the consumption of pesticides could be reduced while giving the same effect as conventional controls.
While increasing demand of the service for the disabled and the elderly people, assistive technologies have been developed rapidly. The natural signal of human such as voice or gesture has been applied to the system for assisting the disabled and the elderly people. As an example of such kind of human robot interface, the Soft Remote Control System has been developed by HWRS-ERC in KAIST[1]. This system is a vision-based hand gesture recognition system for controlling home appliances such as television, lamp and curtain. One of the most important technologies of the system is the hand gesture recognition algorithm. The frequently occurred problems which lower the recognition rate of hand gesture are inter-person variation and intra-person variation. Intra-person variation can be handled by inducing fuzzy concept. In this paper, we propose multivariate fuzzy decision tree(MFDT) learning and classification algorithm for hand motion recognition. To recognize hand gesture of a new user, the most proper recognition model among several well trained models is selected using model selection algorithm and incrementally adapted to the user’s hand gesture. For the general performance of MFDT as a classifier, we show classification rate using the benchmark data of the UCI repository. For the performance of hand gesture recognition, we tested using hand gesture data which is collected from 10 people for 15 days. The experimental results show that the classification and user adaptation performance of proposed algorithm is better than general fuzzy decision tree.