검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 2

        1.
        2017.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Climate change may result in increases in air temperature and shifts in precipitation patterns as the result of increases in atmospheric CO2. Outdoor, naturally sunlit, plant growth chambers referred to as SPAR (Soil Plant Atmosphere Research) chambers are one of the important research facilities under controlled conditions. SPAR provide precise control of the major environmental variables influencing crop growth including temperature, humidity and atmospheric CO2 concentration. Especially the SPAR system is considered as the most realistic approach for studying crop canopy gas exchange including photosynthesis, respiration, transpiration. Indeed, many reports have confirmed that gas exchange values in SPAR is highly associated with dry matter and yield. So SPAR data can be used to develop quantitative relationships and functions, which are then tested against field data. In ARS, the SPAR system is widely used for research on: (1)Response and adaptation of crops and weeds to elevated CO2 and global warming, (2)Developing analytical and management strategies to improve crop utilization and to reduce losses due to the environment, (3)Mechanistic process-level crop simulation models for assessment of agricultural systems.
        4,000원
        2.
        2005.06 KCI 등재 서비스 종료(열람 제한)
        In the absence of exogeneous nitrogen supply, evaluation of a symbiosis effectiveness of Bradyrhizobium japonicum USDA 110 in a supernodulating soybean mutant, SS2-2, its wild type, Sinpaldalkong 2, and control genotype, Jangyeobkong, was conducted in this study. Nodules in SS2-2 were initially white and similar to its wild type, Sinpaldalkong 2. At the late stage, the wild type nodules became dark pinkish by maturation, by contrast, mature nodules in SS2-2 remained light green to pinkish, indicating a lack of leghemoglobin. Tap root length was short in nodulated symbiotic SS2-2 than that of its wild type and the control genotype. Nodulated root length and nodule density on root length were significantly increased by B. japonicum inoculation, but no significant increase was observed on root length and percentage of nodulation to total root length. Regardless of Bradyrhizobium inoculation, SS2-2 showed higher nodule dry weight and higher acetylene reduction activity (ARA) when compared with its wild type and the control genotype. Inoculation of B. japonicum leaded the increase of ARA in 47 days after planting (DAP), in part because of nodule development. Supernodulating mutant, SS2-2, less responded to B. japonicum induction in terms of nitrogen fixation and nodulation characteristics than its wild type. Thus, interaction of supernodulating soybean mutant with Bradyrhizobium had less symbiotically associated response than normal nodulating soybean.