Background: Choosing to perform squats on an unstable surface potentially offers advantages surpassing those of their stable counterpart. Objectives: The purpose of this study was to compare muscle activation during squats on stable and unstable surfaces and investigate the relationship among thigh muscles. Design: Observational study. Methods: Nineteen adults participated in this study. The stable surface consisted of a flat floor. The unstable surface involved the use of an air cushion. An air cushion was positioned beneath each foot of the study participants. Surface electromyography was employed to measure muscle activation. %MVC was calculated by measuring muscle activation during squat execution and manual muscle testing. Results: The comparison of muscle activation during squats between stable and unstable surfaces revealed a significant difference in the rectus femoris and biceps femoris (P<.05). On stable surfaces, positive correlations were observed in the rectus femoris, vastus lateralis, and vastus medialis (P<.05). On unstable surfaces, positive correlations were found between the rectus femoris and vastus medialis (P<.05). Conclusion: This study observed an increase in muscle activation of the rectus femoris and biceps femoris during squats on an unstable support surface compared to a stable support surface.
The objective of this study was to determine the duration of maintained calf muscle flexibility gained in young adults with calf muscle tightness, as measured by increases in ankle active and passive dorsiflexion range of motion (DFROM) after three stretching interventions. Twenty subjects (5 men and 15 women) with calf muscle tightness received the following three stretching interventions in one leg (assigned at random): static stretching (SS), eccentric training on stable surface (ETS), and eccentric training on unstable surfaces (ETU). The subjects received all three interventions to the same leg, applied in a random order. Each intervention had a break of at least 24 h in-between, in order to minimize any carryover effect. Each intervention used two types of stretching: with the calf muscle stretched and both knees straight, and with the knee slightly bent in order to maximize the activation of the soleus muscle. All three interventions were performed for 200 seconds. We measured the duration of maintained calf muscle flexibility through active and passive ankle DFROM before intervention, immediately after intervention (time 0), and then 3, 6, 9, 15, and 30 min after intervention. We found a difference in the duration of maintained calf muscle flexibility between the three interventions. In the ETS and ETU interventions, a significant improvement in calf muscle flexibility, both ankle active and passive dorsiflexion ranges of motion (ADFROM and PDFROM), was maintained for 30 min. In the SS intervention, however, ADFROM before 9 min and PDFROM before 6 min were statistically different from the baseline. Our results suggest that ETS and ETU may be more effective than SS for maintaining calfmuscle flexibility in young adults.