Using the known result of the expected busy period for the triadic Med (N, T, D) operating policies applied to a controllable M/G/1 queueing model, its upper and lower bounds are derived to approximate its corresponding actual values. Both bounds are represented in terms of the expected busy periods for the dyadic Min (N, T), Min (N, D) and Min (T, D) or Max (N, T), Max (N, D) and Max (T, D) with the simple N, T and D operating policies without using any other types of triadic operating policies such as Min (N, T, D) and Max (N, T, D) policies. All three input variables N, T and D are equally contributed to construct such bounds for estimation of the expected busy period.
Using the known result of the expected busy period for a controllable M/G/1 queueing model operating under the triadic Max (N, T, D) policy, its upper and lower bounds are derived to approximate its corresponding actual value. Both bounds are represented
Us ing the known result of the expected bllsy period for the triadic Min (N, T, 0) operating po licy applied to a controllable M/GI1 queueing model, its upper and lower bounds are derived to approximate its corresponding ac tual value. 80th bounds are rep
Using the results of the expected busy periods for the dyadic Min(N, D) and Max(N, D) operating policies in a controllable M/G/1 queueing model, an important relation between them is derived. The derived relation represents the complementary property betw