본 논문에서는 대규모 실시간 매칭의 생존 게임에서 플레이를 위한 유저들의 소셜 관계에 대해 연구한다. 특 히 “사전 팀 구성”을 통한 자의적인 팀 구성이 어떤 방식으로 유저들을 연결하는 지 연구하고자 한다. 다수 의 사람 간 집단 역학에서 나타나는 특성이나 패턴에 대한 조사를 중심으로 하였으며, 개인의 특성은 보조적 인 수단으로만 사용된다. 이번 연구에서는 게임을 플레이하는 유저들의 익명화 된 대규모 데이터를 활용하며 이에 대한 간소화된 집계 방법을 제안한다. 데이터 세트에는 사전 팀 구성에 관한 11,259만 줄의 속성이 포 함되어 있으며, 데이터에서 우리는 250만개의 노드와 1,182만개의 무방향 에지가 있는 협업 네트워크를 구성 하여 대규모 게임 내 협동 네트워크를 만듭니다. 연결 정도, 경로 길이, 클러스터링 및 소속 하위 컴포넌트의 크기 등 네트워크에 관한 수치를 통해 게임내 소셜 활동에 대한 이해를 높이고자 한다. 본 논문에서는 다음 의 두가지 특성을 중심으로 결론을 제시한다. 첫째, 네트워크 내에는 대규모로 연결된 2개(전체의 44% 및 2%)와 나머지의 파편화된 하위 컴포넌트로 구성 되어있다. 이 대규모 컴포넌트 중 작은 쪽은 한국 유저로만 구성되어 있다. 둘째, 컴포넌트 크기 별 평균 연결 거리와 군집화 계수, k-core를 확인함으로써 기타 다른 네 트워크 대비 이웃 간 연결이 강하면서 전체적으로는 비교적 멀리 떨어져 있음을 확인한다.
본 연구는 네트워크 이상 감지 및 예측을 위해 벡터 자기회귀(VAR) 모델의 사용을 비교 분석한다. VAR 모 델에 대한 간략한 개요를 제공하고 네트워크 이상 체크로 사용 가능한 두 가지 버전을 검토하며 두 종류의 VAR 모델을 통한 경험적인 평가를 제시한다. VAR-Filtered moving-common-AR 모델이 단일 노드 이상 감지 성능에서 우수하며, VAR-Adaptive Learning 버전은 몇 개의 노드 간 이상을 효과적으로 식별하는 데 특히 효 과적이며 두 가지 주요VAR 모델의 전반적인 성능 차이에 대한 근본적인 이유도 분석한다. 각 기술의 장단점 을 개요로 제공하고 성능 향상을 위한 제안도 제시하고자 한다.