검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 2

        1.
        2023.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Fish school monitoring technology is utilized for various purposes, such as boat fishing and resource surveys. With advancements in information and communication technology, this technology has expanded its application to remote areas. Its significance has grown in fishing sites, particularly for improving the efficiency and cost-effectiveness of set-net fishing. Set-net fishing gears are not limited to coastal areas, but are also installed in inland and remote sea regions. Consequently, fishermen require technology that allows them to quickly transmit information about approaching fish schools and enables them to perform long-term monitoring. The development of remote monitoring technology for set-net fish schools must consider crucial design factors such as communication range, transmission speed, power consumption of information modules, and operational expenses. In this study, we developed a low-power remote monitoring module for set-net fish school based on WCDMA. The module was specifically designed to minimize power consumption, allowing for communication over long distances and extended operation times in set-net fishing applications. Furthermore, we developed a web server software application that enables remote access to fish schools and provides real-time weather information. The performance of the developed module was evaluated through set-net fishing site application and experiments with moving ships on the sea. The experimental results demonstrated that the remote monitoring system, consisting of the developed low-power remote monitoring module for set-net fish school based on WCDMA and a fish finder, had an average power consumption of 4.6 W, a maximum communication range of 22.84 km, and a data transmission and reception rate of 98.79%. The maximum fish school information transmission and reception rate was 97.26%.
        4,000원
        2.
        2004.03 KCI 등재 서비스 종료(열람 제한)
        A linear power amplifier is particularly emphasized on the system using a linear modulations, such as 16QAM and QPSK with pulse shaping, because intermodulation distortion which causes adjacent channel interference and co-channel interference is mostly generated in a nonlinear power amplifier. In this paper, parameters of a linearization loop, such as an amplitude imbalance, a phase imbalance and a delay mismatch, are briefly analyzed to get a specific cancellation performance and linearization bandwidth Experimental results are presented for IMT-2000 frequency band The center frequency of the feedforward amplifier is 2140MHz with 60MHz bandwidth When the average output power of feedforward amplifier is 20 Watt, the intermodulation cancellation performance is more than 28dB. In this case, the output power of feedforward amplifier reduced 3.5dB because of extra delay line loss and coupling loss. The feedforward amplifier efficiency is more than 7% for multicarrier signals.