검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 2

        1.
        2003.03 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Nonthermal particles can be produced due to incomplete thermalization at collisionless shocks and further accelerated to very high energies via diffusive shock acceleration. In a previous study we explored the cosmic ray (CR) acceleration at cosmic shocks through numerical simulations of CR modified, quasi-parallel shocks in 1D plane-parallel geometry with the physical parameters relevant for the shocks emerging in the large scale structure formation of the universe (Kang & Jones 2002). Specifically we considered pancake shocks driven by accretion flows with Uo = 1500 km s-l and the preshock gas temperature of To = 10 4 - 10 8K. In order to consider the CR acceleration at shocks with a broader range of physical properties, in this contribution we present additional simulations with accretion flows with Uo = 75 - 1500 km s-l and To = 10 4K. We also compare the new simulation results with those reported in the previous study. For a given Mach number, shocks with higher speeds accelerate CRs faster with a greater number of particles, since the acceleration time scale is tacc ∝ Uo-2. However, two shocks with a same Mach number but with different shock speeds evolve qualitatively similarly when the results are presented in terms of diffusion length and time scales. Therefore, the time asymptotic value for the fraction of shock kinetic energy transferred to CRs is mainly controlled by shock Mach number rather than shock speed. Although the CR acceleration efficiency depends weakly on a well-constrained injection parameter, є, and on shock speed for low shock Mach numbers, the dependence disappears for high shock Mach numbers. We present the 'CR energy ratio', Φ(Ms), for a wide range of shock parameters and for є = 0.2 - 0.3 at terminal time of our simulations. We suggest that these values can be considered as time-asymptotic values for the CR acceleration efficiency, since the time-dependent evolution of CR modified shocks has become approximately self-similar before the terminal time.
        4,300원
        2.
        2002.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Cosmological hydrodynamic simulations of large scale structure in the universe have shown that accretion shocks and merger shocks form due to flow motions associated with the gravitational collapse of nonlinear structures. Estimated speed and curvature radius of these shocks could be as large as a few 1000 km/s and several Mpc, respectively. According to the diffusive shock acceleration theory, populations of cosmic-ray particles can be injected and accelerated to very high energy by astrophysical shocks in tenuous plasmas. In order to explore the cosmic ray acceleration at the cosmic shocks, we have performed nonlinear numerical simulations of cosmic ray (CR) modified shocks with the newly developed CRASH (Cosmic Ray Amr SHock) numerical code. We adopted the Bohm diffusion model for CRs, based on the hypothesis that strong Alfven waves are self-generated by streaming CRs. The shock formation simulation includes a plasma-physics-based 'injection' model that transfers a small proportion of the thermal proton flux through the shock into low energy CRs for acceleration there. We found that, for strong accretion shocks, CRs can absorb most of shock kinetic energy and the accretion shock speed is reduced up to 20%, compared to pure gas dynamic shocks. For merger shocks with small Mach numbers, however, the energy transfer to CRs is only about 10-20% with an associated CR particle fraction of 10-3. Nonlinear feedback due to the CR pressure is insignificant in the latter shocks. Although detailed results depend on models for the particle diffusion and injection, these calculations show that cosmic shocks in large scale structure could provide acceleration sites of extragalactic cosmic rays of the highest energy.
        4,900원