검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 5

        1.
        2025.03 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Uranium-contaminated soil can be cleaned using an acid washing process. However, high-concentration acid washing generates substantial amounts of radioactive waste, making it essential to develop a treatment process using low-concentration acid. This study evaluated the effectiveness of low-concentration sulfuric acid washing for uranium removal from contaminated soil. Experiments were conducted with a 0.05 M sulfuric acid solution. With a mixing ratio of soil to acid solution at 1:5, three consecutive washes were sufficient to remove uranium from contaminated soil to clearance level. During the acid washing process, real-time pH monitoring was performed to analyze the correlation between uranium leaching and pH changes. This led to the establishment of a monitoring-based process control strategy. In conclusion, we identified an effective method for removing uranium from soil under low acid concentration conditions. Consequently, significant reductions in radioactive waste generation are anticipated.
        4,000원
        2.
        2024.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The feeder pipes of the primary cooling system in a pressurized heavy water reactor (PHWR) are composed of carbon steel SA 106 GR.B. On the surface of this structural material, corrosion oxide layers including radionuclides are formed due to the presence of active species from water decomposition products caused by radiation, as well as the high temperature and high-pressure environment. These oxide layers decrease the heat transfer efficiency of the primary cooling system and pose a risk of radiation exposure to workers and the environment during maintenance and decommissioning, making effective decontamination essential. In this study, we simulated the formation of the corrosion oxide layer on the surface of carbon steel SA 106 GR.B, characterized the formed corrosion oxide layer, and investigated the dissolution characteristics of the corrosion oxide layer using oxalic acid (OA), a commercial chemical decontamination agent. The corrosion oxide layer formed has a thickness of approximately 4 μm and consists of hematite ( Fe2O3) and magnetite ( Fe3O4). The carbon steel coupons with formed oxide layers were dissolved in 10 mM and 20 mM OA solutions, resulting in iron ion concentrations of 220 ppm and 276 ppm in the OA respectively. In 10 mM and 20 mM OA, the corrosion depths of the coupons were 8.93 μm and 10.22 μm, with corrosion rates of 0.39 mg/cm2·h and 0.45 mg/cm2·h, respectively. Thus, this demonstrates that higher OA concentrations lead to increased dissolution and corrosion of steel.
        4,000원
        3.
        2021.06 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Chemical equilibrium calculations for multicomponent aqueous systems involving the reductive dissolution of magnetite (Fe3O4) with oxalic acid (H2C2O4) were performed using the HSC Chemistry® version 9. They were conducted with an aqueous solution model based on the Pitzer’s approach of one molality aqueous solution. The change in the amounts and activity coefficients of species and ions involved in the reactions as well as the solution pH at equilibrium was calculated while changing the amounts of raw materials (Fe3O4 and H2C2O4) and the system temperature from 25°C to 125°C. In particular, the conditions under which Fe3O4 is completely dissolved at high temperatures were determined by varying the raw amount of H2C2O4 and the temperature for a given raw amount of Fe3O4 fed into the aqueous solution. When the raw amount of H2C2O4 added was small for a given raw amount of Fe3O4, no undissolved Fe3O4 was present in the solution and the pH of the solution increased significantly. The formation of ferrous oxalate complex (FeC2O4) was observed. The equilibrium amount of FeC2O4 decreased as the raw amount of H2C2O4 increased.
        4,000원