Porcine has been known to have a great impact on the studies of organ transplantation, biomaterial production and specific biomodel development such as transgenic animals. To achieve such therapeutic purposes, establishment of porcine embryonic stem cells (pESCs) will be needed. Especially, in vitro differentiation toward neural cells from pESCs can be a useful tool for the study of early neural development and neurodegenerative disorders. In addition, these cells can also be used in cell replacement therapies and drug development for neuroprotective and/or neurotoxic reagents. Although several studies reported the successful isolation of pES-like cells, it has been a big challenge to determine optimal conditions to generate pESCs without loss of pluripotency for a long time. The present study was performed for generation and characterization of putative pESCs, and differentiation into neurons and astrocytes. In this study, porcine blastocysts were produced by parthenogenetically activated oocytes. The putative pESCs were cultured in pESC growth media supplemented with a growth factor and cytokines (bFGF, LIF and SCF). Subculture of pESCs was conducted by mechanical dissociation using syringe needles after 4-5 days of incubation. As results, six putative pESC lines were maintained over thirty passages. The putative pESCs were compact, round, flat, and single layered, which were similar to human embryonic stem cell morphologically. Six pES-like cells were positive for alkaline phosphatase activity at every three passages. Furthermore, Oct-3/4, Sox-2, Nanog and SSEA-4 were shown to be expressed in those cells. Also, normal karyotypes of pESCs were observed by Giemsa-staining. Differentiation potential into the three germ layers of the putative pESCs was demonstrated by the formation of embryoid bodies (EB). Besides, the study of ESC is very important in aspect of its application to not only the cell-based replacement therapies but also cellular differentiation research. Our results also showed that RA and N2 supplements activated the neural differentiation in pESC5. Neurofilament-l60 were expressed in neural precursor cells. The expression of markers for specific neural lineages, such as Microtubule-associated protein-2 expressed in matured neuron, was also induced from embryonic neural progenitors. In summary, the pESCs were generated from the parthenogenetically activated blastocysts and the typical characteristics of the cells were maintained for the long term culture. Furthermore, it was successful to differentiate the pESCs into various neural lineages through in vitro neurogenesis system. Eventually, pESCs will be excellent biomedicine in incurable and/or zoonotic diseases by regenerating the damaged tissue.
Dormant blastocysts during delayed implantation exhibit heightened autophagic activation. Activation of autophagy, the self-eating process within cells, was suggested as an adaptive response to unfavorable environment of prolonged survival in utero. During the course of this study, we observed by transmission electron microscopy that multivesicular bodies (MVBs) accumulate in the trophectoderm of dormant blastocysts upon activation of implantation by estrogen. MVBs are the late endosomes which are characterized by the presence of diverse internal vesicles within a large vesicle. Autophagosomes fuse with MVBs during autophagic activation, and efficient autophagic degradation requires functional MVBs. Biogenesis of MVBs depends on a dynamic network of ESCRT complexes 0, I, II, and III. Tsg101 (a component of the ESCRT-I complex) and CD63 are often used as a marker of MVBs. Lysobisphosphatidic acid (LBPA) is an abundant lipid in MVBs and required for the formation of MVBs. In this study, we performed immunofluorescence staining for detection of MVB makers in dormant and activated embryo. In dormant blastocysts, expression of Tsg101 and LBPA exhibited a uniform pattern throughout the trophectoderm. In contrast, expression of both markers prominently increased in the mural trophectoderm of activated blastocysts. To investigate the relationship with MVB formation and autophagy activation in activated blastocyst, 3-MA, a widely used inhibitor of autophagy, was daily injected intraperitoneally to ovx mice. Interestingly, 3-MA injection to block autophagy during delayed implantation led to a reduction of the signal of MVB markers, suggesting that prolonged activation of autophagy in dormant blastocysts is associated with MVB formation upon activation of implantation. Collectively, these results show that expression of MVB makers increase in the trophectoderm of blastocysts upon activation of implantation and that the formation of MVB is associated with heightened autophagy during delayed implantation.