검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 1

        1.
        2005.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study was conducted to evaluate the biofiltration treatment characteristic for benzene vapor gas. Compost and calcium silicate porous material were used as biofilter fillers. Gas velocity and empty bed retention time were 15 m/hr and 4 min, respectively. Benzene gas removal efficiency of P-Bio (calcium silicate porous material with inoculation) was the highest and maintained in over 98%. After shock input of benzene gas, the removal efficiency of P-Bio biofilter was recovered within 2 days, while 5 days were taken in CP-Bio (compost + calcium silicate porous material mixture with inoculation) and CP (compost + calcium silicate porous material mixture without inoculation) biofilters. The removal efficiency of P-Bio biofilter was near 100% in the loading rate of 〈85g/m3(filling material)/hr, It was shown that the maximum elimination capacities of P-Bio, CP-Bio, and CP biofilters were 95, 69, and 66 g/m3(filling material)/hr, respectively. Microbial number of P-Bio, which the number was the lowest at start-up, was 3 orders increased on operational day 48. CO2 was generated greatly in order of P-Bio, CP-Bio, and CP biofilters.
        4,000원