In this paper, the in vitro biocompatibility of graphene film (GF) with osteoblasts was evaluated through cell adhesion, viability, alkaline phosphatase activity, F-actin and vinculin expressions, versus graphite paper as a reference material. The results showed that MG-63 cells exhibited stronger cell adhesion, better proliferation and viability on GF, and osteoblasts cultured on GF exhibited vinculin expression throughout the cell body. The rougher and wrinkled surface morphology, higher elastic modulus and easy out-of-plane deformation associated with GF were considered to promote cell adhesion. Also, the biomineralization of GF was assessed by soaking in simulated body fluid, and the GF exhibited enhanced mineralization ability in terms of mineral deposition, which almost pervaded the entire GF surface. Our results suggest that graphene promotes cell adhesion, activity and the formation of bonelike apatite. This research is expected to facilitate a better understanding of graphene-cell interactions and potential applications of graphene as a promising toughening nanofiller in bioceramics used in load-bearing implants.
전라남도 화순군에 위치한 백아산 아천동굴은 전남지역에서 발견된 유일한 석회동굴이다. 이 연구에서는 백아산 아천동굴 내부에서 채취한 동굴생성물(동굴산호, 붕암)과 주변 점토 퇴적물의 광물학적 특성을 확인하고, 생성물 내에 존재하는 호기성 미생물을 농화배양하여 탄산염광물을 형성하는 생광물화작용에 대해 알아보고자 하였다. 연구를 위한 시료는 동굴 내 세 지점에서 점토, 동굴산호, 붕암을 채취하였다. XRD 분석결과, 동굴산호와 붕암은 주로 탄산염광물인 Mg가 풍부한 방해석 (Mg-rich calcite)으로 이루어져 있었고, 점토는 석영, 백운모, 질석으로 구성되어 있었다. 탄산염광물 형성 미생물의 농화배양을 위하여 각각 소량의 동굴생성물을 D-1 배지에 넣고 상온의 호기 조건에서 미생물을 배양하였다. 그리고 미생물들의 탄산염광물 형성능을 확인하고자 요소가 포함된 D-1 배지에 칼슘이온(Ca-acetate, Ca-lactate)을 주입한 후 각 시료로부터 농화배양된 미생물 배양액을 1% (v/v)씩 주입하였다. 그 결과 모든 조건에서 흰색의 침전물이 형성되었으며, XRD 분석결과 침전물이 방해석과 바테라이트(vaterite)로 구성된 것을 확인하였다. SEM-EDS 분석 결과 Ca, C, O를 주성분으로 하는 능면체, 구형, 주상형의 탄산칼슘이 관찰되었다. 따라서 백아산 아천동굴 내 영구암대에 분포하는 임의의 동굴생성물로부터 확인된 미생물들은 동굴생성물 형성에 관여하고 탄소와 칼슘의 지화학적 순환에 기여했을 것으로 추정된다.
Soil-cement는 토양과 혼합수 및 cement를 배합하여 토양의 강도를 높이는 공법으로, 지반의 안정처리, 도로포장 등의 일정 강도가 필요한 공사에 적용되는 공법이다. 특히 흙속에 모래가 많은 비중을 차지하게 되며, 모래의 경우 국내 건설현장에서 수요는 증대하는 반면 공급은 부족한 현실이다. 최근 건설사업 분야에서 건설재료의 확보가 어려워짐으로 인해 하천 및 해상에서의 골재 채취가 필연적으로 발생한다. 이러한 골재의 채취는 무한한 것이 아니며 자연환경 및 생태계의 파괴와 같은 문제점이 나타나고 있다. 또한, Soil-cement에 사용되는 cement는 유연탄을 원료로 사용하고 있으나 유연탄은 수입에 의존하고 있으며, 광물산업은 우리나라 산업공정 분야에서 CO2 발생량의 약 99.5%를 차지하여 환경문제를 야기하고 있다. 위와 같은 문제들을 해결하기 위해서 굴패각을 대체 재료로 활용하며, cement의 사용량 감소로 인한 강도저하 방지를 위해 생물학적 광물화를 이용하였다. 굴패각은 우리나라 남해에서 꾸준히 생산되고 있으며 연간 25만 톤이 발생된다. 그러나 대부분의 굴패각이 재활용 되고 있지 않아 불법매립 및 인근 해양의 오염 피해를 입히고 있는 실정이다. 위와 같은 점을 고려하여 모래를 대체할 수 있는 재료로 굴패각을 사용 하였다. 또한, 환경문제를 야기하는 cement의 사용량을 줄이면 강도가 감소하게 되는데, 저하되는 강도를 방지하기 위해 생물학적 광물화를 이용하였으며, 메커니즘은 미생물이 Urea를 분해하면서 탄산이온과 암모늄이온을 생성하고 탄산이온과 수용액에 용해된 염화칼슘의 칼슘이온이 결합하여 탄산칼슘을 형성하여 침전물의 형태로서 토립자의 공극사이를 채우는 역할을 한다. 굴패각은 사업장 일반폐기물로서 기본적인 중금속 실험을 실시하였고 대체 재료로서의 특성과 미생물의 강도증진을 확인하기 위해 토성분석 및 일축압축강도 등의 실험을 실시하였다.