검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 5

        1.
        2023.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Environmental DNA (eDNA) can exist in both intracellular and extracellular forms in natural ecosystems. When targeting harmful cyanobacteria, extracellular eDNA indicates the presence of traces of cyanobacteria, while intracellular eDNA indicates the potential for cyanobacteria to occur. However, identifying the “actual” potential for harmful cyanobacteria to occur is difficult using the existing sediment eDNA analysis method, which uses silica beads and cannot distinguish between these two forms of eDNA. This study analyzes the applicability of a density gradient centrifugation method (Ludox method) that can selectively analyze intracellular eDNA in sediment to overcome the limitations of conventional sediment eDNA analysis. PCR was used to amplify the extracted eDNA based on the two different methods, and the relative amount of gene amplification was compared using electrophoresis and Image J application. While the conventional bead beating method uses sediment as it is to extract eDNA, it is unknown whether the mic gene amplified from eDNA exists in the cyanobacterial cell or only outside of the cell. However, since the Ludox method concentrates the intracellular eDNA of the sediment through filtration and density gradient, only the mic gene present in the cyanobacteria cells could be amplified. Furthermore, the bead beating method can analyze up to 1 g of sediment at a time, whereas the Ludox method can analyze 5 g to 30 g at a time. This gram of sediments makes it possible to search for even a small amount of mic gene that cannot be searched by conventional bead beating method. In this study, the Ludox method secured sufficient intracellular gene concentration and clearly distinguished intracellular and extracellular eDNA, enabling more accurate and detailed potential analysis. By using the Ludox method for environmental RNA expression and next-generation sequencing (NGS) of harmful cyanobacteria in the sediment, it will be possible to analyze the potential more realistically.
        4,000원
        2.
        2021.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Cryopreservation is a widely-used efficient means of long-term sperm preservation. However, unlike other types of semen, cryopreserved boar semen has reduced fertility and the efforts continue to optimize post-thawing sperm recovery. In this study, we evaluated the effects of various washing solutions (Hulsen solution, labmade DPBS and commercial DPBS) on post-thawing porcine sperm kinematics (CASA system), viability (SYBR-14/PI) and acrosome integrity (PSA/FITC). We also examined the effect of washing-centrifugation on frozen-thawed semen kinematics. The results indicate that type of washing solution and post-thawing centrifugation alters parameters linked to sperm quality (total motility, progressive motility, viability and acrosome integrity). Significantly higher (p < 0.05) motility and progressive motility were obtained when cryopreserved semen was processed with Hulsen solution. The postthaw percentage of live and intact acrosomal sperm was significantly higher in group 1 (Hulsen solution) as compared to other groups. Following thawing-centrifugation, the results showed significantly higher motility and progressive motility in group 1 than other groups. However, the latter two DPBS groups did not differ statistically. Taken together, Frozen-thawed spermatozoa motility, acrosome integrity and viability can be affected by the type of washing solution used. Moreover, centrifugation of frozenthawed semen has an unfavorable effect on total motility and progressive motility.
        4,000원
        3.
        2020.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Porcine epidemic diarrhea virus (PEDV) is a porcine coronavirus that causes enteric diseases characterized by watery diarrhea and dehydration in suckling piglets. Concentrated and highly purified viruses are required for the preparation of vaccines, diagnostics, and virus research. Currently, most protocols for virus purification require ultracentrifugation, which can be an instrumental barrier to routine operations in a laboratory. In this study, the efficacy of low-speed centrifugation for virus concentration was examined. The SM98 strain of PEDV was propagated in Vero cells and pelleted by centrifugation for 3 h at high speed (100,000 × g) or for 18 h at low speed (10,000 × g). The efficacy of virus concentration was analyzed by virus titration and western blotting. The amounts of infectious viruses and viral proteins in the pelleted samples obtained by low-speed centrifugation were comparable to those obtained by high-speed centrifugation. Interestingly, the pelleted sample impurity level was lower in low-speed than in high-speed centrifugation. In summary, we describe an efficient, easy-to-perform protocol for the preparation of purified and concentrated PEDV.
        4,000원