Groundwater level hydrographs from observation wells in Jeju island clearly illustrate distinctive features of recharge showing the time-delaying and dispersive process, mainly affected by the thickness and hydrogeologic properties of the unsaturated zone. Most groundwater flow models have limitations on delineating temporal variation of recharge, although it is a major component of the groundwater flow system. Recently, a convolution model was suggested as a mathematical technique to generate time series of recharge that incorporated the time-delaying and dispersive process. A groundwater flow model was developed to simulate transient groundwater level fluctuations in Pyoseon area of Jeju island. The model used the convolution technique to simulate temporal variations of groundwater levels. By making a series of trial-and-error adjustments, transient model calibration was conducted for various input parameters of both the groundwater flow model and the convolution model. The calibrated model could simulate water level fluctuations closely coinciding with measurements from 8 observation wells in the model area. Consequently, it is expected that, in transient groundwater flow models, the convolution technique can be effectively used to generate a time series of recharge.
Temporal variation of groundwater levels in Jeju Island reveals time-delaying and dispersive process of recharge, mainly caused by the hydrogeological feature that thickness of the unsaturated zone is highly variable. Most groundwater flow models have limitations on delineating temporal variation of recharge, although it is a major component of the groundwater flow system. A new mathematical model was developed to generate time series of recharge from precipitation data. The model uses a convolution technique to simulate the time-delaying and dispersive process of recharge. The vertical velocity and the dispersivity are two parameters determining the time series of recharge for a given thickness of the unsaturated zone. The model determines two parameters by correlating the generated recharge time series with measured groundwater levels. The model was applied to observation wells of Jeju Island, and revealed distinctive variations of recharge depending on location of wells. The suggested model demonstrated capability of the convolution method in dealing with recharge undergoing the time-delaying and dispersive process. Therefore, it can be used in many groundwater flow models for generating a time series of recharge.
In order to fast predict the wind-driven current in a small bay, a convolution method in which the wind-driven current can be generated only with the local wind is developed and applied in the Sachon Bay.
The root mean square(rms) ratio defined as the ratio of the rms error to the rms speed is 0.37. The rms ratio is generally less than 0.2, except for all the mouths of Jinju Bay and Namhae-do and in the region between Saryang Island and Sachon. The spatial average of the recover rate of kinetic energy(rrke) is 87 %. Thus, the predicted wind-driven current by the convolution model is in a good agreement with the computed one by the numerical model. The ratio of the difference between observed residual current (Vr) and predicted wind-driven current (Vc) to a residual current, that is, (Vr -Vc)/Vr shows 56%, 62% at 2 moorings in the Sachon Bay.
In order to fast predict the wind-driven current in a small bay, a convolution method in which the wind-driven current can be generated only with the local wind is developed and applied in the idealized bay and the idealized Sachon Bay.
The accuracy of the convolution method is assessed through a series of the numerical experiments carried out in the idealized bay and the idealized Sachon Bay. The optimum response function for the convolution method is obtained by minimizing the root mean square (rms) difference between the current given by the numerical model and the current given by the convolution method. The north-south component of the response function shows simultaneous fluctuations in the wind and wind-driven current at marginal region while it shows "sea-saw" fluctuations (in which the wind and wind-driven current have opposite direction) at the central region in the idealized Sachon Bay. The present wind is strong enough to influence on the wind-driven current especially in the idealized Sachon Bay.
The spatial average of the rms ratio defined as the ratio of the rms error to the rms speed is 0.05 in the idealized bay and 0.26 in the idealized Sachon Bay. The recover rate of kinetic energy(rrke) is 99% in the idealized bay and 94% in the idealized Sachon Bay. Thus, the predicted wind-driven current by the convolution model is in a good agreement with the computed one by the numerical model in the idealized bay and the idealized Sachon Bay.