본 연구에서는 수치해석을 통하여 반복하중으로 인해 곡관에 형성되는 피로균열에 대한 분석을 수행하였다. 곡관의 수치해석 모델을 개발하였으며, 균열 형성 시점과 형성 과정에 기초하여 수치해석 모델을 검증하였다. 요소에 erosion 기능을 적용하여 피로균열을 표현하고 형성 시점을 추정하고자 하였으며, 두께방향으로 다수의 요소를 배치하여 균열의 형성 과정 또한 모사하고자 하였다. 100 mm 변위에 대한 실험결과와 비교하여 균열의 형성 시점 및 형상이 잘 일치하는 것을 확인하였으며, 추가적인 다른 변위에 대한 균열의 형성 시점 또한 예측하였다. 본 모델을 사용하여 다양한 형태의 하중에 대해 해석을 수행한다면 곡관의 형상 및 특성에 따른 하중과 균열 형성시점의 관계를 예측할 수 있을 것으로 기대된다.
In this study, we numerically analyze fatigue cracks of curved pipes under cyclic loadings. Numerical models of the curved pipes are developed. The models are verified with the experimental results in terms of fatigue lives and development process of the fatigue cracks. Erosion technique is applied to the solid elements in order to describe shapes of the fatigue cracks and estimate the fatigue lives. Also, development of the fatigue cracks is described by allocating sufficient number of solid elements in the radial direction. Fatigue lives and shapes of the crack resulting from numerical analyses show good agreement with those of the experiment considering ±100mm displacement. In addition, estimation of the fatigue life caused by displacement with different magnitude is conducted. We expect that the model can be applied to understand the relation between fatigue lives and characteristics of pipes or loadings.
This paper is concerned with -the numerical a-nalysis on the secondary flow between two concentric torus-shaped curved pipe with the change in III which is the ratio between the radii of the inner and outer periphery circles. The primary and the secondary flows are solved by a method of series expansion, based on the momentum equation for the flow fields. The first term of the series expansion is determined and the analytical and graphical expression is presented for the secondary flow. It is known that the boundary layer exists, at which the directions of the secondary flow stream lines are reversed, but this study confirmed that the secondary flows are reduced with the increase of the