Cyclin B1 is known to reflect the M-phase promoting factor (MPF), a universal regulator of G2/M-phase transition, activity during the process of oocytes maturation. To investigate whether culture condition affects the maturation rate and the expression of cyclin B1 protein, bovine immature oocytes are stimulated and cultured according to the following protocols: Experiment 1: denuded oocytes (denude) only, COC only, denuded oocytes + granulosa cells (denude + GCs) and COC + GCs; Experiment 2: no-activation (control), 7% ethanol for 5 min and 10 l/ml ionomycin for 5 min at immediately before maturation. The maturation rates of denude and no-activation group were significantly lower in both experiments (P<0.05), respectively. Co-culture or stimulation method in bovine immature oocytes culture increases the cyclin B1 expression significantly in both experiments (P<0.05). Based on these results, culture condition affects the maturation rate and the expression of cyclin B1 protein during the first meiotic maturation in bovine immature oocytes.
Further development of reconstructed embryos may be dependent upon the synchronization of donor nucleus and recipient cytoplasm at cell fusion, To control the synchronization of donor and recipient cells, the enucleated MII arrested oocytes are artificially stimulated prior to embryo reconstruction. Destruction of cyclin B results in the exit of cells from M-phase of cell cycle. This study was designed to investigate the effects of single or combined stimulation affected cyclin B1 mRNA and protein levels in mouse oocytes. The oocyte activation was induced by 7% ethanol or 10/ Ca-ionophore without (single) or with (combined) 10/ cycloheximide. Competitive quantitative PCR for cyclin Bl mRNA and western blot analysis for cyclin B1 protein was preformed in mouse oocytes. Cyclin B1 mRNA level was significantly reduced in single (P<0.05) and combined (P<0.05) stimulation groups. However, this level did not change in non-activated group and increased in intact group. Cyclin B1 protein level was also significantly reduced in both single (P<0.05) and combined (P<0.05) stimulation groups. In conclusion, single and combined stimulation induces the degradation of cyclin B1 mRNA and protein after activation in enucleated mouse oocytes.
To evaluate the correlations between the expression of cyclin B1 mRNA and protein after stimulation and oocyte activation and development of nuclear transferred mouse embryos, this study was performed. The oocyte activation was induced by 7% ethanol or 10/ Ca-ionophore without (single) or with (combined) 10/ cycloheximide (CH). Cyclin B1 mRNA and protein in mouse oocytes was evaluated by PCR and western blot. The activation and blastocyst development in both single (P<0.05) and combined (P<0.01) stimulation was higher than in non-activated group. The cyclin B1 mRNA and protein levels were significantly reduced in both single and combined stimulation groups (P<0.05), respectively. Cyclin B1 mRNA expression showed a negative correlation between activation and blastocyst development in both single and combined stimulation groups. And also the expression of cyclin B1 protein showed a negative correlation with between oocyte activation and blastocysts development in both single and combined stimulation groups. In conclusion, it may suggest that single and combined stimulation increases the oocyte activation and blastocyst development of nuclear transferred embryos, because it induces the degradation of cyclin B1 mRNA and protein after activation in enucleated mouse oocytes.