검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 2

        1.
        2011.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study proposes the compensation method for the mechanical deflection error of a SCARA robot. While most studies on the related subject have dealt with the development of a control algorithm for improvement of robot accuracy, this study presents the control method reflecting the mechanical deflection error which is predicted in advance. The deflection at the end of the gripper of SCARA robot is caused by the self-weights and payloads of Arm 1, Arm 2 and quill. If the deflection is constant even though robot’ posture and payload vary, there may not be a big problem on robot accuracy because repetitive accuracy, that is relative accuracy, is more important than absolute accuracy in robot. The deflection in the end of the gripper varies as robot’ posture and payload change. That’ why the moments ,  and  working on every joint of a robot vary with robot’ posture and payload size. This study suggests the compensation method which predicts the deflection in advance with the variations in robot’ posture and payload using neural network. To do this, I chose the posture of robot and the payloads at random, found the deflections by the FEM analysis, and then on the basis of this data, made compensation possible by predicting deflections in advance successively with the variations in robot’ posture and payload through neural network learning.
        4,000원