검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 2

        1.
        2016.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : Low visibility caused by dark surroundings at nighttime affects the likelihood of accidents, and various efforts, such as installing road safety facilities, have been made to reduce accidents at night. Despite these efforts, the nighttime severity index (SI) in Korea was higher than the daytime SI during 2011-2014. This study determined the factors affecting daytime and nighttime accident severity through a discriminant analysis. METHODS: Discriminant analysis. RESULTS: First, drowsiness, lack of attention, and lighting facilities affected both daytime and nighttime accident severity. Accidents were found to be caused by a low ability to recognize the driving conditions and a low obstacle avoidance capability. Second, road conditions and speeding affected only the daytime accident severity. Third, failure to maintain a safe distance significantly affected daytime accident severity and nonsignificantly affected nighttime accident severity. The majority of such accidents were caused by rear-end collisions of vehicles driving in the same direction; given the low relative speed difference in such cases, the shock imparted by the accidents was minimal. CONCLUSIONS: Accidents caused by a failure to maintain a safe distance has lower severity than do accidents caused by other factors.
        4,000원
        2.
        1998.02 KCI 등재 서비스 종료(열람 제한)
        The dicriminant function was introduced to understand the cause and establish the prediction method of red tides occurring in Jinhae Bay, Korea. Two sea regions of Masan and Haengam Bays and Dangdong and Wonmun Bays had different types of causes and patterns for red tides. In Masan and Haengam Bays, the red tides concentrically occurred during June and September. For example, in June the red tides occurred from physical and meteorological factors, which are related to the stratification and the increase in planktons. However, in August the red tides occurred from the water quality environment, based on these conditoins. Futhermore, in September the red tides were caused by the balance between the meteorological and water quality environmental factors. In contrast to those, in Dangdong and Wonmun Bays, the red tides mainly occurred during July and October and the frequency of occurrence was not as much as Masan and Haengam Bays. Especially, in August and September most meteorological and physical factors or water quality environmental factors appeared to contribute to the occurrence of red tides. This indicates that red tides do not easily occur as they are controlled by various environmental factors particularly in these regions. The discriminant functions were applied to predict red tides which they were actually occurred in Masan and Haengam Bays in June. The results showed that they were successful for the prediction of red tide at Haengam Bay but not at Masan Bay. The reason for their discrepancy in Masan Bay could have come from using a slight higher value of pH or COD in May, instead of its value in June.