지난 10년 동안, 이중 가닥 RNA (double-stranded RNA, dsRNA)를 이용한 특정 유전자 발현 간섭(RNA interference, RNAi) 기술은 의약품 개발뿐만 아니라 작물보호 분야에 해충방제부터 익충보호까지 다양하게 그 기술이 사용되어 왔다. 그동안 학계 및 산업체에서 활발히 연 구되어 온 RNAi기술을 이용한 작물 및 익충보호제는 상용화를 눈앞에 두고 있다. 미래 농업 시장에서 해충방제제와 익충보호제로써의 개발을 위한 RNAi의 기술적 응용은 상당한 잠재력을 가지고 있지만, 현장에 직접 사용되기에는 아직 여러 가지 한계점이나 극복해야 할 과제가 남아있 다. 본 리뷰에서는 최근에 활발히 진행되고 있는 작물보호제 및 익충보호제(protection of crops and beneficial insects)로써의 dsRNA의 다양 한 활용과 그 잠재성(potential)을 소개하고자 한다.
RNA interference (RNAi) has been widely adopted as a primary reverse genetic tool to determine the physiological function of genes of interest. Nevertheless, the lack of optimized RNA delivery method has been a major obstacle for non-model organisms, such as Cimex lectularis. In this study, we have established a RNAi protocol for the silencing of C. lectularis salivary gland-specific cholinesterase (SChE) gene based on micro-injection of double stranded RNA (dsRNA). An aliquot (20 nl) of dsRNA solution (4.5 ng/nl) was injected to body cavity through the arthrodial membrane between metathoracic coxa and sternum of adult females. Observed mortality was less than 5% and at 6-day post injection, while the gene silencing efficiency reached 97~99% at 2-6 day post injection. This result demonstrates the efficacy of injection RNAi via the arthrodial membrane in C. lectularius.
이중가닥 RNA (double-stranded RNA, dsRNA)는 표적 유전자의 발현을 억제하는 기능으로 해충방제에 응용되었다. 인테그린은 α와 β 단위체로 구성된 이량체 막 단백질이다. 진핵생명체에서 인테그린은 세포-세포 및 세포-세포외기질의 상호연결에 중요한 역할을 담당한다. 인 테그린 β 단위체 발현을 억제하는 특정한 dsRNA (= dsINT)는 해당 곤충에 뚜렷한 치사효과를 유발한다. 또한, dsINT를 발현시키는 형질전환 된 대장균도 해당 곤충에 뚜렷한 살충력을 가진다. 그러나 이 세균 살충제의 야외 적용을 위해서는 제형화 기술이 필요했다. 본 연구는 dsINT를 발현하는 재조합 세균을 동결 건조시켜 대상 곤충에 대해 살충효능을 검정하였다. 동결 건조된 세균은 파밤나방(Spodoptera exigua) 종령 유충에 높은 섭식독을 일으켰다. 파밤나방에 대해서 Bacillus thuringiensis 상용 살충제 처리는 불과 60%의 살충력을 보이는 반면, 동결 건조된 dsINT 발현 세균과 혼합 처리할 때 살충력은 크게 증가하였다. dsINT 발현 세균은 해당 인테그린 염기서열 유사성에 따라 차이를 보이는 해충 종에 선 택적 독성을 나타냈다. 이 결과는 인테그린에 특이적 dsRNA를 발현하는 세균이 동결 건조 제형화 조건하에서도 살충력을 유지한다는 것을 나타 냈다.
RNA interference (RNAi) technology based on feeding double-stranded RNA (dsRNA) has been employed for the control of insect pests. In general, strong lethal effects have been observed when feeding RNAi is applied to chewing insects. However, the efficacy of feeding RNAi for sap-sucking insects has not been reported to be limited most likely due to the reduced rate of dsRNA translocation into the plant sap. In this experiment, therefore, we tested whether the long-hairpin RNA (lhRNA) structure, which mimics the viroid, can improve its translocation within plant tissues, thereby increasing lethality of target gene, when compared with dsRNA structure. Either lhRNA of dsRNA structure (75 ng/ul) of vacuolar ATP synthase subunit A (V-ATPase) gene was delivered via rice seedling to Nilaparvata lugens, which is one of the major sucking insects on rice, and mortality was measured until 60 h post-treatment. Treatment of the lhRNA and dsRNA of V-ATPase gene caused increased mortality over time compared with eGFP-treated control, reaching the maximum level at 48 h post-treatment, and the mortality was significantly higher in lhRNA treatment than in dsRNA treatment. Gene silencing of target gene was confirmed at 24 h and 48 h post-treatment. In summary, treatment of lhRNA resulted in significantly higher mortalities than that of dsRNA, suggesting that delivery of lhRNA has an apparent advantage over dsRNA in exerting RNAi-induced lethality.