An in-vivo diagnosis of trace Mg(II) ion was performed using a low-cost and environment-friendly voltammetric method, using a graphite counter and reference electrodes and a fluorine-immobilized graphite working electrode, and clean deep seawater was used as an electrolyte solution. Under optimum conditions, the analytical working ranges attained microgram ranges, and a detection limit of 80.6ugL-1 was obtained using stripping voltammety with 60 sec accumulation time. Ex-vivo application was performed on fish liver and mice droppings. The developed techniques can be applicable to tumor cell analysis.
Diagnosis with an ex-vivo gold sensor was done using a modified fluorine-doping sensor, and cyclic voltammetry (CV) redox potentials of 0.4 V anodic and -0.2 V cathodic were obtained. Both peak currents were optimized using square-wave (SW) stripping voltammetry, and an analytical working range of 10-80 ug/L SW was attained. The precision of the 10-mg/L Au was 0.765 (n=8) RSD under the optimum conditions, and the analytical detection limit approached 0.006 ug/L (S/N=3) with only a 60 sec accumulation time. The developed method was used to examine the mouse droppings for medicinal diagnosis.