We introduce a depth scaling strategy to improve the accuracy of frequency-domain elastic full waveform inversion (FWI) using the new pseudo-Hessian matrix for seismic data without low-frequency components. The depth scaling strategy is based on the fact that the damping factor in the Levenberg-Marquardt method controls the energy concentration in the gradient. In other words, a large damping factor makes the Levenberg-Marquardt method similar to the steepest-descent method, by which shallow structures are mainly recovered. With a small damping factor, the Levenberg-Marquardt method becomes similar to the Gauss-Newton methods by which we can resolve deep structures as well as shallow structures. In our depth scaling strategy, a large damping factor is used in the early stage and then decreases automatically with the trend of error as the iteration goes on. With the depth scaling strategy, we can gradually move the parameter-searching region from shallow to deep parts. This flexible damping factor plays a role in retarding the model parameter update for shallow parts and mainly inverting deeper parts in the later stage of inversion. By doing so, we can improve deep parts in inversion results. The depth scaling strategy is applied to synthetic data without lowfrequency components for a modified version of the SEG/EAGE overthrust model. Numerical examples show that the flexible damping factor yields better results than the constant damping factor when reliable low-frequency components are missing.
이 논문에서는 반무한 고체영역의 표면에서 측정한 변위응답의 시간이력으로부터 유한요소망 연속기법을 이용해 탄성파속도의 공간적 분포를 추정하는 역해석 문제를 소개한다. 반무한 영역에서의 역해석을 위해서는 해석 대상이 되는 유한영역의 경계에서 파동의 반사가 일어나지 않도록 하는 것이 중요하다. 이를 위해 유한영역의 경계면에 perfectly-matchedlayers(PMLs)라는 수치적 파동흡수층을 도입하였고, PML을 경계로 하는 유한영역에서 역해석 문제를 정의하였다. 이 문제를 탄성파동방정식을 구속조건으로 하는 최적화 문제로 표현하였으며, 라그랑주 승수법에 기초한 비구속 최적화 기법에 의해 탄성파속도의 최적 분포를 결정하였다. 해의 정확도와 수렴성을 높이기 위해 유한요소망 연속기법을 도입하여 점진적으로 밀도가 증가하는 유한요소망에 대해 연속적으로 역해석을 수행하였다. 1차원 예제들을 통해 유한요소망 연속기법을 이용한 역해석으로부터 탄성파속도의 분포를 정확히 추정할 수 있음을 확인하였으며, 측정 응답에 노이즈가 존재하는 경우에도 제안한 역해석 기법은 목표 탄성파속도 분포에 근사한 결과를 도출하였다.