Rapidly changing environmental factors due to climate change are increasing the uncertainty of crop growth, and the importance of crop yield prediction for food security is becoming increasingly evident in Republic of Korea. Traditionally, crop yield prediction models have been developed by using statistical techniques such as regression models and correlation analysis. However, as machine learning technique develops, it is able to predict the crop yield more accurate than the statistical techniques. This study aims at proposing the onion yield prediction framework to accurately predict the onion yield by using various environmental factor data. Temperature, humidity, precipitation, solar radiation, and wind speed are considered as climate factors and irrigation water and nitrogen application rate are considered as soil factors. To improve the performance of the prediction model, ensemble learning technique is applied to the proposed framework. The coefficient of determination of the proposed stacked ensemble framework is 0.96, which is a 24.68% improvement over the coefficient of determination of 0.77 of the existing single machine learning model. This framework can be applied to the particular farmland so that each farm can get their customized prediction model, which is visualized by the web system.
최근 기후변화로 인한 국지성 호우 및 태풍 피해가 자주 발생하고 있다. 이와 같은 피해를 저감하기 위해서는 정확한 강우의 예측과 홍수량 산정이 필요하다. 그러나 지점 및 레이더 강우 시 ․ 공간적 오차를 포함하고 있고, 유출 모형에 의한 유출수문곡선 역시 보정을 실시하더라도 관측유량과 오차를 가지고 있어 불확실성이 존재한다. 따라서 본 연구에서는 확률론적 강우 앙상블을 생성하여 강우의 불확실성을 확인하였다. 또한 유출 결과를 통해 수문 모형의 불확실성을 확인하였고, 블랜딩 기법을 이용하여 하나의 통합된 유출 수문곡선을 제시하였다. 생성된 강우앙상블은 강우강도 및 지형적인 영향으로 레이더가 과소 관측이 될 때, 강우 앙상블의 불확실성이 큰 것을 확인하였고, 블랜딩 기법을 적용하여 산정된 최적 유출 수문곡선은 유출모형의 불확실성을 크게 줄이는 것으로 나타났다. 본 연구 결과를 활용한다면, 정확한 홍수량 산정 및 예측을 통해 집중호우로 인한 피해를 줄일 수 있을 것으로 판단된다.