검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 5

        2.
        2016.12 KCI 등재 서비스 종료(열람 제한)
        The present research was chiefly designed to determine the effect of the treatment of estrogenic agonist, estradiol benzoate (EB), or antiandrogenic compound, flutamide (Flu), at the weaning age on the expression of connexin (Cx) isoforms in the caudal epididymis of adult male rat. Animals were subcutaneously administrated with a single shot of either EB at a low-dose (0.015 mg of EB/kg body weight (BW)) or a high-dose (1.5 mg of EB/kg BW) or Flu at a low-dose (500 mg of EB/kg BW) or a high-dose (5 mg of EB/kg BW). Expressional changes of Cx isoforms in the adult caudal epididymis were examined by quantitative real-time PCR analysis. The treatment of a low-dose EB caused significant increases of Cx30.3, Cx31, Cx32, and Cx43 transcript levels but reduction of Cx31.1, Cx37, and Cx45 expression. Exposure to a high-dose EB resulted in very close responses observed in a low-dose EB treatment, except no significant expressional change of Cx37 and a significant induction of Cx40. Expression of all Cx isoforms, except Cx45, was significantly increased by a low-dose Flu treatment. Expressional increases of all Cx isoforms were detected by a high-dose Flu treatment. The current study demonstrates that a single exposure to estrogenic or antiandrogenic compound during the early postnatal developmental period is sufficient to disrupt normal expression of Cx isoforms in the adult caudal epididymis.
        3.
        2015.12 KCI 등재 서비스 종료(열람 제한)
        A proper development of the epididymis during the early postnatal development is required for successful fertility in the adult male. Direct cell-cell communication via connexin (Cx) molecules is a common way of cellular interactions to achieve normal development of a given tissue consisting of different cell types. The present research was attempted to determine the effect of exogenous exposure to estrogenic agonist or antiandrogen at the weaning age on expression of Cx isoforms in the adult corpus epididymis. Male rats were subcutaneously administrated with estradiol benzoate (EB) or flutamide (Flu) at the weaning age. The tissue was collected at 4 months of age. Expressional levels of Cx isoforms were determined by a quantitative real-time PCR. Statistical comparison showed significant increases of Cxs31, 32, 37, 40, and 43 transcript amounts by a treatment of 0.015 mg of EB /kg body weight (BW). A treatment of 1.5 μg of EB /kg BW caused a significant decrease of Cx43 gene expression but increases of Cxs26, 31, 32, 37, and 40 transcript levels. Exposure to 500 mg of Flu/kg BW induced an increase of Cx37 expression but significant decreases of Cxs43 and 45 mRNA levels. Expression of Cx37 was increased by a treatment of 5 mg of Flu/kg BW, while transcript levels of Cxs26, 30.3, 31, 31.1, 32, and 43 were significantly decreased by same treatment. These results demonstrate that exposure to steroidal compounds at the early developmental age alters expression of Cx isoforms in the adult corpus epididymis.
        4.
        2015.06 KCI 등재 서비스 종료(열람 제한)
        Cell-cell direct communication through channel-forming molecules, connexin (Cx), is essential for a tissue to exchange signaling molecules between neighboring cells and establish unique functional characteristics during postnatal development. The corpus epididymis is a well-known androgen-responsive tissue and involves in proper sperm maturation. In the present research, it was attempted to determine if expression of Cx isoforms in the corpus epididymis in the adult is modulated by exposure to estrogenic or anti-androgenic compound during the early postnatal period. The neonatal male rats at 7 days of age were subcutaneously injected by estradiol benzoate (EB) at low-dose (0.015 mg/kg body weight) or high-dose (1.5 mg/kg body weight) or flutamide (Flu) at low-dose (500 mg/kg body weight) or high-dose (50 mg/kg body weight). The corpus epididymis collected at 4 months of age was subjected to evaluate expressional changes of Cx isoforms by quantitative real-time PCR. Treatment of low-dose EB resulted in increases of Cx32, Cx37, and Cx45 transcript levels, while exposure to high-dose EB decreased expression of Cx26, Cx30.3, Cx31, Cx31.1, Cx32, Cx40, Cx43, and Cx45. Treatments of Flu caused significant decreases of expression of all examined Cx isoforms, except Cx37 and Cx43 shown no expressional change with high-dose Flu treatment. These findings imply that expression of most Cx isoforms present in the corpus epididymis would be transcriptionally regulated by actions of androgen and/or estrogen during postnatal period.
        5.
        2015.03 KCI 등재 서비스 종료(열람 제한)
        Connexin (Cx) is a complex which allows direct communication between neighboring cells via exchange of signaling molecules and eventually leads to functional harmony of cells in a tissue. The initial segment (IS) is an excurrent duct of male reproductive tract and expression of numerous genes in the IS are controlled by androgens and estrogens. The effects of these steroid hormones on gene expression in the IS during postnatal development have not extensively examined. The present research investigated expressional modulation of Cx isoforms in the IS by exogenous exposure to estrogen agonist, estradiol benzoate (EB), or androgen antagonist, flutamide (Flu), at weaning age. Two different doses of EB or Flu were subcutaneously administrated in 21-day old of male rats, and expressional changes of Cx isoforms in the adult IS were analyzed by quantitative real-time PCR. Treatment of a low-dose EB (0.015 μg/kg body weight) resulted in an increased expression of Cx31 gene and a decreased expression of Cx37 gene. A high-dose EB (1.5 μg/kg body weight) treatment caused an increase of Cx31 gene expression. Increased levels of Cx30.3 and Cx40 transcripts were observed with a low-dose Flu (500 μg/kg body weight) treatment. Treatment of high-dose Flu (50 mg/kg body weight) led to expressional increases of Cx30.3, 40, and 43 genes. Our previous and present findings suggest differential responsiveness on gene expression of Cx isoforms in the IS by androgens and estrogens at different postnatal ages.