최근 심층 학습 기반의 표정 재연 기술에 대한 많은 연구가 진행되고 있다. 표정 재연 기술이란 입력 이미지 속 사람의 표정을 원하는 표정으로 재연하는 기술이다. 표정 재연 기술은 게임 산업 분야에 유용하게 활용될 수 있을 것이나 표정 재연 기술을 게임 캐릭터에 적용하는 것은 쉽지 않다. 게임 캐릭터의 AU(Action Unit)를 추출하는 것이 힘든 일이기 때문이다. 따라서 본 논문에서는 색상 모듈을 사용하여 게임 캐릭터에도 적용할 수 있는 심층 표정 재연 기술을 제안한다. 게임 캐릭터에서 AU 추출이 가능하도록 색상 모듈을 이용, 캐릭터의 얼굴 색을 실제 사람 얼굴의 색으로 조정한다. 본 논문의 모델은 GAN 기반 구조이다. 본 논문이 제시한 프레임 워크는 색상 모듈, 두가지 생성자, 두가지 판별자, Identity 보존 모듈로 이루어진다. 입력 이미지를 색상 모듈을 통해 얼굴 색을 조정한 후 입력 AU에 따라 생성자를 통해 중립 이미지를 생성한 후 재연 이미지를 생성한다. 그 후 색상 모듈을 통해 입력 이미지 캐릭터의 피부색으로 다시 조정하여 결과 이미지를 생성한다. 이미지가 생성될 때마다 판별자를 통해 이미지의 품질을 측정하고 Identity 보존 모듈을 통해 Identity를 예측하여 보존한 다. 본 연구의 결과는 게임 캐릭터에 대해 기존 연구들보다 표정 변화가 잘 일어난 이미지를 생성했고 이를 게임 분야에 활용할 수 있을 것이다.
최근 GAN(Generative Adversarial Network) 등장 이후 얼굴 표정 재연(face reenactment)의 연구가 활발해지고 있다. 얼굴 표정 재연은 입력으로 주어진 얼굴 이미지를 원하는 표정의 이미지 혹은 표정 정보를 갖는 벡터(vector)을 입력으로 주어 원하는 표정으로 합성하는 기술이다. 본 논문은 GAN 아키텍쳐(architecture)를 기반으로 회전 모듈 (rotate module)과 다양한 각도의 게임 캐릭터 표정을 표정 정보를 갖는 AUs(Action Units) vector를 통해 재연시키 는 방법을 제안한다. 입력으로 다양한 각도의 게임 캐릭터 얼굴이 주어지면 회전 모듈을 통해 정면화(frontalization) 시킨 이미지를 합성한다. 이를 통해, 다양한 각도의 게임 캐릭터들은 각도의 영향에서 벗어날 수 있다. 정면화 이미지는 원하는 표정으로 합성하기 위해 표정 정보를 갖는 AU벡터와 함께 생성자(generator)에 입력으로 주어진다. 이 때, 표정 정보를 갖고 있는 벡터는 AUs를 사용함으로써 다양한 표정과 세기(intensity)를 표현할 수 있다. 생성자는 표정 정보에 대한 관심 지역을 의미하는 관심 마스크(attention mask)를 생성하고 색상 정보를 의미하는 색상 마스크(color mask)를 생성한다. 이를 통해, 게임 캐릭터의 특징과 기타 부착물을 보존하며 표정을 재연한 이미지를 합 성할 수 있다. 관심 마스크와 색상 마스크를 이용하여 원하는 표정으로 재연한 재연 이미지를 합성하고 다시 회전 모듈을 통해 기존의 입력 이미지의 각도로 재회전하여 원하는 결과 이미지를 얻을 수 있다.