In this study, finite element (FE) analysis was performed to evaluate the seismic performance of the water treatment plant, which is a major state of the art water treatment plant, to predict tensile cracks and compressive failure. The FE model simulation for two facilities of the water purification plant was made considering the initial conditions, boundary conditions and water effect. For the nonlinear dynamic analysis, seismic analysis was performed using ground acceleration. Tensile cracks and compressive failure are analyzed and the effects on the structures are analyzed. As a result of the analysis, tensile cracks can be predicted to occur in the main structure.
The plastic deformation behaviors for powder extrusion of rapidly soildified Al-Si-Fe alloys at high temperature were investigated. During extrusion of Al-Si-Fe alloys, primary Si and intermetallic compound in matrix are broken finely. Additionally, during extrusion metastable phase() intermetallic compound disappears and the equilibrium phase() is formed. In gereral, it was diffcult to establish optimum process variables for extrusion condition through experimentation, because this was costly and time-consuming. In this paper, in order to overcome these problems, we compared the experimental results to the finite element analysis for extrusion behaviors of rapidly solidified Al-Si-Fe alloys. This ingormation is expected to assist in improving rapidly solidified Al-Si alloys extrusion operations.