검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 1

        1.
        2018.11 구독 인증기관·개인회원 무료
        Ovarian folliculogenesis and the production of fertilizable oocytes depend on gap junctional intercellular communication within both the developing and the mature follicle. Gap junctions connect oocytes with granulosa cells and granulosa cells with each other. Various nutritional bio-molecules are known to be transferred to the growing oocyte from the granulosa cells via gap junction. Signals that regulate meiotic maturation of fully-grown oocytes pass through the oocyte-granulosa cell gap junctions. Gap junctions also play a critical role in regulating uterine blood flow, contributing to the maternal recognition and also implantation during pregnancy. Due to the challenge of various stressors the in vitro embryo developmental potentials are still suboptimal compared to in vivo. To identify the molecular mechanism of these stressors and to improve the existing embryo developmental potentials, the singlet oxygens quencher lycopene was added to the culture media to counterbalance the oxidative damage caused by ROS. In this study, we have patterned connexin like Cx43, Cx37, Cx32 and Cx26 at protein and transcription level during follicular growth, atresia and blastocyst stage by using immunohistochemistry, conventional PCR and RT-qPCR. Lycopene (0.2 μM) significantly (P < 0.05) increased the gap junctional communication protein (connexin) expression of Cx43, Cx37, Cx32, Cx26 as compared to the control group at both transcription and translation level during follicular growth, atresia and blastocyst stage. Lycopene potentiates ovarian folliculogenesis, provides the production of fertilizable oocytes and improved embryo developmental capabilities by increasing gap junctional intercellular communication.