막 구조물은 연성의 막에 초기 장력을 주고 외관의 강성을 늘림으로써 외부하중에 안정된 형태를 유지하는 구조물로 두께를 얇게 하여 대공간 구조에 많이 채택된다. 이러한 막 구조는 자유로운 곡선을 표현할 수 있는 특성이 있어, 구조적 형태의 선정은 매우 중요하다. 이에 본 논문에서는 넙스를 기저함수로 하는 비정형 곡면으로 형상을 표현하고, 최적의 곡면 형상 탐색을 위한 대변형 결과값 도출을 위해 기하학적 비선형을 고려한 유한요소해석법을 제안하였다. 또한, 형상 탐색 결과로 나타난 곡면의 형상 근사화의 최소화를 위해 유한 요소망으로 표현된 최종 형상을 다시 넙스로 구현하는 인터페이스 기법을 제안하여, 비정형 막 구조물의 최적 곡면을 표현하였다.
In this work, a finite element model is presented for geometrically non-linear analysis of shell structures. Finite element by using a three-node flat triangular shell element is formulated. The non-linear incremental equilibrium equations are formulated by using an updated Lagrangian formulation and the solutions are obtained with the incremental/iterative Newton-Raphson method and arc length method. Some of results are presented for shell structures. The obtained results are in good agreement with the results available in existing literature.
공간뼈대의 구조에 대하여 기하학적 비선형성이 고려될 수 있는 유한요소이론 및 해석법을 제시한다. 이를 위하여 가상일의 원리를 이용하여 대변형효과를 고려한 3차원 연소체의 평형방정식으로부터, 구속된(restrained warping)효과를 무시하고 유한한 회전각의 2차항의 효과를 포함하는 변위장을 도입하여 초기응력을 받는 공간뼈대요소의 증분평형방정식을 유도한다. 공간뼈대구조를 유한요소로 나누어 요소의 변위장을 요소변위 벡터에 관한 Hermitian다항식으로 나타내고 이를 평형방정식에 대입함으로써 탄성 및 가하학적인 강도행렬을 유도한다. 또한 updated Lagrangian co-rotational formulation에 근거하여, 증분변위로부터 강체회전변위와 순수변형성분을 분리시켜서 강체회전은 요소의 방향변화를 결정하고, 순수변형은 부재력증분을 산정하는 불평형하중 산정법을 제시한다. 공간뼈대구조의 횡-비틂좌굴 및 후좌굴 거동에 대한 예제들을 통하여 본 연구에 대한 해석결과와 문헌의 결과를 비교 검토함으로써 본 연구에서 제시된 이론 및 해석방법의 정당성을 입증한다.